База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Пусть \calN=\bigoplus_{j}\calN_j - разложение пространства \calN в прямую сумму взаимно ортогональных подпространств. Тогда для любой пары матриц плотности \rho, \gamma

(Отметьте один правильный вариант ответа.)

Варианты ответа
\sum_{j} |\PP(\rho,\calN_j)-\PP(\gamma,\calN_j)|\ \leq\ \|\rho-\gamma\|_\trr\hskip2pt(Верный ответ)
\sum_{j} |\PP(\rho,\calN_j)-\PP(\gamma,\calN_j)|\ \qeq\ \|\rho-\gamma\|_\trr\hskip2pt
\sum_{j} |\PP(\rho,\calN_j)-\PP(\gamma,\calN_j)|\ \qeq\ \|\gamma\-\rho|_\trr\hskip2pt
Похожие вопросы
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
Если есть пространство состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j, тогда всякий оператор вида W=\sum\limits_{j}^{} \Pi_{\calL_j}\otimes U_j будет называться:
Как называется оператор вида W=\sum\limits_{j}^{} \Pi_{\calL_j}\otimes U_j, если в пространстве состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j?
Если есть пространство состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j, тогда измеряющим будет называться всяки оператор вида:
При отображении \LL(\calN) в \LL(\calN\otimes\calK), \calN - квантовая часть и \calK - классическая часть системы, результат является диагональным по отношению:
Если имеется чистое состояние \ket{\psi}\in\calN\otimes\calF, то разложение Шмидта имеет вид (0<\lambda_j\le 1, \{\ket{\xi_j}\}\subset\calN и \{\ket{\eta_j}\}\subset\calF - ортонормированные вектора):
Если Z - множество троек вида (\langle\text{описание k-локального гамильтониана } H\rangle, a, b), где k=O(1), 0\leq a<b, b-a=\Omega(n^{-\alpha}), (a>0), то для z\in Z выполняются условия:
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Если Z - множество троек вида \langle\text{описание квантовой схемы } W\rangle, p_0, p_1) описанием схемы - приближенная реализация в стандартном базисе, а p_1-p_0=\Omega(n^{-\alpha}) (a>0, n - размер описания схемы). Тогда для z\in\Z F(z)=1 выполняется:
Если на пространстве \calN=\calN_1\otimes\calN_2 задана матрица плотности вида \rho_1\otimes\rho_2 и имеется два подпространства \calM_1\subseteq \calN_1, \calM_2\subseteq \calN_2, то справедливо равентство: