База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

В детерминированном измерении \begin{equation}\rho\ \mapsto\ \sum_{j}^{}\PP(\rho,\calL_j)\left(\gamma^{(j)},j\right), \end{equation} \gamma^{(j)} выступает в качестве:

(Отметьте один правильный вариант ответа.)

Варианты ответа
состояния измеряемой системы до измерения
состояния измеряемой системы после измерения и получения результата(Верный ответ)
результата измерений
Похожие вопросы
Преобразование матриц плотности \begin{equation}\rho\ \mapsto\ \sum_{j}^{}\PP(\rho,\calL_j)\left(\gamma^{(j)},j\right), \end{equation} где \gamma^{(j)}=\PP(\rho,\calL_j)^{-1}\times\Pi_{\calL_j} \rho\Pi_{\calL_j}, называется:
Если унитарный оператор  U разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1, то  \Lambda(U)=\sum_{j} (\Pi_0+\lambda_j\Pi_1)\otimes\Pi_{\calL_j}= \sum_{j}^{} \begin{pmatrix} 1&0\\ 0&\lambda_j \end{pmatrix} \otimes\Pi_{\calL_j}. В этом случае условные вероятности будут равны:
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
Почему  U в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U можно разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Можно ли в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U разложить  U в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
Пусть \calN=\bigoplus_{j}\calN_j - разложение пространства \calN в прямую сумму взаимно ортогональных подпространств. Тогда для любой пары матриц плотности \rho, \gamma
В качестве \mathsf{Q}_j в булевой формуле \mathsf{Q}_1\, y_1\dots\mathsf{Q}_n\, y_n F(y_1,\dots,y_n), задаваемой задачей TQBF, где y_i\in\cb,F - некоторая логическая формула, выступает:
Если Z - множество троек вида (\langle\text{описание k-локального гамильтониана } H\rangle, a, b), где k=O(1), 0\leq a<b, b-a=\Omega(n^{-\alpha}), (a>0), то для z\in Z выполняются условия:
Чему равна суммарная длина (F(x),z) и (x,O^{N-n}) в формуле \sum_{z}^{} \bigl| \langle F(x),z|\,U\,|x,0^{N-n}\rangle\bigr|^2 \geq \varepsilon, которой должна удовлетворять квантовая схема U=U_L\cdot\ldots\cdot U_2U_1, вычисляющая F:
Если унитарный оператор U\in U(2) действует на трехмерном евклидовом пространстве (U\colon{} E\mapsto UEU^{-1}), для матриц Паули \sx=\begin{pmatrix}0&1\\1&0\end{pmatrix},\; \sy=\leftp\begin{array}{rr}0&-i\\ i&0\end{array}\rightp,\; \sz=\leftp\begin{array}{rr}1&0\\0&-1\end{array}\rightp., \sx соответствует повороту вокруг оси X на: