База ответов ИНТУИТ

Линейная алгебра

<<- Назад к вопросам

Доказательство, какой теоремы приведено ниже: Пусть d=\upsilon -w и b=w-w_{1}\in W. По определению a\perp b, поэтому
\left\Vert a\perp b\right\Vert ^{2}=(a+b,a+b)=\left\Vert a\right\Vert^{2}+\left\Vert b\right\Vert ^{2}

(Отметьте один правильный вариант ответа.)

Варианты ответа
если \varpi - ортогональная проекция вектора \upsilon на подпространство W и \varpi _{1}\in W, то
\left\Vert v-w_{1}\right\Vert ^{2}=\left\Vert v-w\right\Vert^{2}+\left\Vert w-w_{1}\right\Vert ^{2}
(Верный ответ)
если e_{1},...,e_{n} - ортонормированный базис пространства V и \upsilon \in V, то \upsilon =\sum\limits_{i=1}^{k}(\upsilon ,e_{i})e_{i}
если w и w^{\perp }- ортогональные проекции вектора \upsilon на подпространства W и W^{\perp }, то \upsilon =w+w\perp
Похожие вопросы
Пусть линейный оператор в пространстве R^{3} имеет в базисе \left( \left( 8,\ -6,\ 7\right) ,\ \left( -16,\ 7,\ -13\right) ,\ \left(9,\ -3,\ 7\right) \right) матрицу
\left( \begin{array}{ccc}1 & -18 & 15 \\ -1 & -22 & 20 \\ 1 & -25 & 22%\end{array}%\right)
Какая будет его матрица в базисе \left( \left( 1,\ -2,\ 1\right) ,\ \left( 3,\ -1,\ 2\right) ,\ \left( 2,\1,\ 2\right) \right)?
Пусть линейный оператор в пространстве V в базисе \left( e_{1},\ ...,\ e_{4}\right) имеет матрицу
\left( \begin{array}{cccc}0 & 1 & 2 & 3 \\ 5 & 4 & 0 & -1 \\ 3 & 2 & 0 & 3 \\ 6 & 1 & -1 & 7%\end{array}%\right)
Какая будет матрица этого оператора в базисе \left( e_{2},\ e_{1},\ e_{3},\ e_{4}\right)?
Пусть линейный оператор в пространстве R\left[ x\right] _{2} имеет в базисе (1,\ x,\ x^{2}) матрицу
\left( \begin{array}{ccc}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0%\end{array}%\right)
Какая будет его матрица в базисе \left( 3x^{2}+2x+1,\ x^{2}+3x+2,\ 2x^{2}+x+3\right)?
Определите, какие подпространства в R\left[ x\right] _{n} и C\left[ x\right] _{n}, инвариантные относительно оператора A\left( f\right) =x\frac{df}{dx}:
Определите, какие подпространства в R\left[ x\right] _{n} и C\left[ x\right] _{n}, инвариантные относительно оператора A(f)=\frac{1}{x}\ \int\limits_{0}^{x}\ f(t)dt:
Доказательство, какого следствия приведено ниже: Если \alpha _{i} - угол между вектором e_{i} и подпространством W, то d_{i}=d/\cos \alpha?
В пространстве многочленов M^{2} задано скалярное произведение (f,g)=a_{0}b_{0}+a_{1}b_{1}+a_{2}b_{2}, гдеf(t)=a_{0}+a_{1}t+a_{2}t^{2}, \  \ g(t)=b_{0}+b_{1}+b_{2}t^{2}. Как будет выглядеть матрица оператора дифференцирования А и сопряженного оператора A^{\ast } в базисе
\left( 1,t,\frac{3}{2}t^{2}-\frac{1}{2}\right)
Линейное преобразование \varphi в базисе e_{1},e_{2},e_{3},e_{4} имеет матрицу
\left( \begin{array}{cccc}1 & 2 & 0 & 1 \\ 3 & 0 & -1 & 2 \\ 2 & 5 & 3 & 1 \\ 1 & 2 & 1 & 3%\end{array}%\right)
. Как будет выглядеть матрица этого же преобразования в базисе: e_{1},e_{3},e_{2},e_{4}?
Линейное преобразование \varphi в базисе a_{1}=(8,-6,7),\\ a_{2}=(-16,7,-13),\\ a_{3}=(9,-3,7) имеет матрицу
\left( \begin{array}{ccc}1 & -18 & 15 \\ -1 & -22 & 15 \\ 1 & -25 & 22%\end{array}%\right)
Как будет выглядеть матрица в базисе b_{1}=(1,-2,1),\ \ b_{2}=(3,-1,2),\ \ b_{3}=(2,1,2)?
Линейное преобразование \varphi в базисе e_{1},e_{2},e_{3},e_{4} имеет матрицу
\left( \begin{array}{ccc}15 & -11 & 5 \\ 20 & -15 & 8 \\ 8 & -7 & 6%\end{array}%\right)
Как будет выглядеть матрица в базисе f_{1}=2e_{1}+3e_{2}+e_{3},\ \ f_{2}=3e_{1}+4e_{2}+e_{3},\ \f_{3}=e_{1}+2e_{2}+2e_{3}?