База ответов ИНТУИТ

Математические модели механики сплошных сред

<<- Назад к вопросам

Напряженное состояние, описываемое шаровым тензором напряжений {p_{ij}} = - p{g_{ij}}, называется всесторонним сжатием. Определить относительное изменение объема \theta

(Отметьте один правильный вариант ответа.)

Варианты ответа
\theta  = \frac{p}{{\lambda  + \frac{1}{3}\mu }}
\theta  = \frac{p}{{\lambda  + \frac{2}{3}\mu }}(Верный ответ)
\theta  = \frac{p}{{\lambda  - \frac{1}{3}\mu }}
Похожие вопросы
Напряженное состояние, описываемое шаровым тензором напряжений {p_{ij}} = - p{g_{ij}}, называется всесторонним сжатием. Коэффициент пропорциональности между р и относительным изменением объема \theta называется модулем объемного сжатия К. Найти выражение для К через Е и \nu
Напряженное состояние, описываемое шаровым тензором напряжений {p_{ij}} = - p{g_{ij}}, называется всесторонним сжатием. Определить компоненты деформации
В круглом тонком диске радиуса R и постоянной толщины температура меняется от центра к периферии по закону T = T(r). Все поверхности диска свободны от напряжений, толщина мала, так что напряженное состояние можно считать плоским. Определить напряжение {p_{\theta \theta }} в диске, вызванное неоднородностью поля температур. На внешней границе диска T(R) = 0
Определить напряжение {p_{\theta \theta }} в длинной круглой трубе с внутренним a и внешним b радиусами при плоской деформации, если температура внутри равна {T_0} = const, снаружи T(b) = 0, а ее внешняя и внутренняя поверхности свободны от напряжений
В круглом тонком диске радиуса R и постоянной толщины температура меняется от центра к периферии по закону T = T(r). Все поверхности диска свободны от напряжений, толщина мала, так что напряженное состояние можно считать плоским. Определить напряжение {p_{rr}} в диске, вызванное неоднородностью поля температур. На внешней границе диска T(R) = 0
Профиль скорости в пограничном слое задан соотношениями u = \left\{ \begin{array}{l} U\sin (\alpha y);{ при }0 \le \alpha y \le \frac{\pi }{2} \\  U;{ при }\alpha y > \frac{\pi }{2} \\  \end{array} \right. Здесь \alpha  = \alpha (x), U = const. Найти толщину потери импульса \theta (Толщина потери импульса \theta в пограничном слое определяются формулами: \theta  = \int\limits_0^\infty  {u\frac{{1 - u/U}}{U}} dy)
Определить напряжение {p_{\theta \theta }} в упругом шаре радиуса b, имеющем полость радиуса a, если температура {T_0} внутри полости постоянна, а температура снаружи равна нулю. Предварительно найти распределение температуры в среде. Внешняя поверхность шара и поверхность полости свободны от напряжений
Определить напряжение {p_{zz}} в длинной круглой трубе с внутренним a и внешним b радиусами при плоской деформации, если температура внутри равна {T_0} = const, снаружи T(b) = 0, а ее внешняя и внутренняя поверхности свободны от напряжений
Определить напряжение {p_{rr}} в длинной круглой трубе с внутренним a и внешним b радиусами при плоской деформации, если температура внутри равна {T_0} = const, снаружи T(b) = 0, а ее внешняя и внутренняя поверхности свободны от напряжений
Идеальный совершенный газ, в которомp = \rho RT, u = {c_V} + const, протекает сквозь поверхность разрыва, на которой нет внешних притоков массы, импульса и энергии. Считая потоки тепла {q_{n1}} и {q_{n2}} равными нулю (адиабатичность), а значения p = {p_1}, \rho  = {\rho _1} по одну сторону поверхности разрыва известными, найти изменение энтропии {s_2} - {s_1} как функцию {\rho _2}