База ответов ИНТУИТ

Математический анализ - 1

<<- Назад к вопросам

Пусть \alpha (x), \beta (x) б.м.ф. при \limits_{x \to x_0} и \overline{\exists} \lim\limits_{x \to x_0} {\frac {\beta (x)} {\alpha (x)}}.Тогда 

(Отметьте один правильный вариант ответа.)

Варианты ответа
\alpha (x), \beta (x) одного порядка
не сравнимы(Верный ответ)
\alpha (x) более высокого порядка, чем \beta (x)
\alpha (x), \beta (x) эквивалентны
\beta (x) более высокого порядка, чем \alpha (x)
Похожие вопросы
Пусть \alpha (x), \beta (x), \alpha_1 (x), \beta_1 (x) - бесконечно малые при x \to x_0 функции, причём \alpha (x) \sim \alpha_1 (x) и \beta (x) \sim \beta_1 (x). Если \exists \lim\limits_{x \to x_0} {\frac {\alpha (x)} {\beta (x)}} = C \neq \infty, то
Пусть \alpha (x), \beta (x), \alpha_1 (x), \beta_1 (x) - бесконечно малые при x \to x_0 функции, причём \alpha (x) \sim \alpha_1 (x) и \beta (x) \sim \beta_1 (x). Если \exists \lim\limits_{x \to x_0} {\frac {\alpha (x)} {\beta (x)}} = \infty, то
Пусть \alpha (x), \beta (x) б.м.ф. при \limits_{x \to x_0} и \lim\limits_{x \to x_0} {\frac {\alpha (x)} {\beta (x)}} = C \neq 0. Тогда
Пусть \alpha (x), \beta (x) б.м.ф. при \limits_{x \to x_0} и \lim\limits_{x \to x_0} {\frac {\alpha (x)} {\beta (x)}} = 1. Тогда
Пусть \alpha (x), \beta (x) б.м.ф. при \limits_{x \to x_0} и \lim\limits_{x \to x_0} {\frac {\beta (x)} {\alpha (x)}} = 0. Тогда
Пусть \alpha (x), \beta (x) б.м.ф. при x \in x_0 и \lim\limits_{x \to x_0} {\frac {\alpha (x)} {\beta (x)}} = 0. Тогда
Подобрать параметр C так, чтобы бесконечно малые величины \alpha(x) и \beta(x) были эквивалентными друг другу при x\to a. \alpha(x)=- \ln (\cos (\sqrt 2 x)), \beta(x)=x^C, a=0
Подобрать параметр C так, чтобы бесконечно малые величины \alpha(x) и \beta(x) были эквивалентными друг другу при x\to a. \alpha(x)=\sqrt{1+6x^2}-1, \beta(x)=C x^2, a=0
Подобрать параметр C так, чтобы бесконечно малые величины \alpha(x) и \beta(x) были эквивалентными друг другу при x\to a. \alpha(x)=\sqrt[3]{1+3x^3}-1, \beta(x)=x^C, a=0
Подобрать параметр C так, чтобы бесконечно малые величины \alpha(x) и \beta(x) были эквивалентными друг другу при x\to a. \alpha(x)=\ln (\cos 2x), \beta(x)=Cx^2, a=0