База ответов ИНТУИТ

Математический анализ - 1

<<- Назад к вопросам

Функция f(x) = O(\varphi (x)) при x \to x_0, если

(Отметьте один правильный вариант ответа.)

Варианты ответа
\exists M > 0 \enskip U(x_0) : |f(x)| \leq M \cdot |\varphi (x)| \enskip \forall x \in U(x_0) \enskip x \neq x_0(Верный ответ)
\exists M > 0 \enskip U(x_0) : |f(x)| \geq M \cdot |\varphi (x)| \enskip \forall x \in U(x_0) \enskip x \neq x_0
\exists M > 0 \enskip U(x_0) : |\varphi(x)| \leq M \cdot |f(x)| \enskip \forall x \in U(x_0) \enskip x \neq x_0
Похожие вопросы
Пусть функция y = f(x) задана параметрически: x = \varphi (t), y = \psi (t) . Каким условиям должна удовлетворять функция x = \varphi (t) на интервале (\alpha , \beta) для того, чтобы существовала производная y'_x:
Каким условиям должны удовлетворять функции y = f(u), u = \varphi (x) в точках u_0 = \varphi (x_0) и x = x_0 соответственно , чтобы сложная функция y = f[\varphi (x)] была дифференцируемой в точке x = x_0:
Пусть функция y = f(x) задана параметрически: x = \varphi (t), y = \psi (t) . Каким условиям должна удовлетворять функция x = \psi (t) на интервале (\alpha , \beta) для того, чтобы существовала производная y'_x:
Является ли следующая функция непрерывной в каждой точке своей области определения? Примечание: \left[x\right] - целая часть от x. f(x)=x если |x|\le 1 и f(x)=1, если |x|> 1
Если функция u = \varphi (x) непрерывна в точке x_0, а функция y = f(u) непрерывна в точке u_0 = \varphi (x_0), то сложная функция y = f[\varphi (x)]
Является ли следующая функция непрерывной в каждой точке своей области определения? Примечание: \left[x\right] - целая часть от x. f(x)=\sin \frac 1x если x\neq 0 и f(0)=0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет максимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет минимум, если её производная f'(x) при переходе через точку x_0
Пусть x_0 - критическая точка f(x), но f(x) непрерывна в x_0. Тогда функция f(x) в точке x_0 имеет экстремум, если её производная f'(x) при переходе через точку x_0
Для функции $f(x)$ вычислите дифференциал $df(x_0)$ и приращение функции $\Delta f(x_0)$ в заданной точке $x_0$ при приращении аргумента $\Delta x$. В качестве ответа введите относительную погрешность дифференциала к приращению функции. Округлите значение до 4 знаков после запятой: $f(x)=\frac 1 {x-1}$, $x=0$, $\Delta x=-0.3$