База ответов ИНТУИТ

Математический анализ - 2

<<- Назад к вопросам

Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int \dfrac{1}{3+2\cos x} dx и выбрать правильный вариант:

(Отметьте один правильный вариант ответа.)

Варианты ответа
\dfrac{2\sqrt{5}}{5}\arctg \left(\tg \left(\frac{x}{2} \right)  \right)+ c
\dfrac{2\sqrt{5}}{5}\arctg \left(\dfrac{\sqrt{5}x}{5}  \right)+ c
\arctg \left(\dfrac{\tg \frac{x}{2}}{\sqrt{5}} \right)+ c
\dfrac{2\sqrt{5}}{5}\arctg \left(\dfrac{\sqrt{5}}{5}\tg \left(\frac{x}{2} \right)  \right)+ c(Верный ответ)
Похожие вопросы
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int \dfrac{1}{\left(1-x^2 \right)^{\dfrac{3}{2}}} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int \dfrac{1}{\sin x}  dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int \dfrac{1}{\sin^2x+2\cos^2x} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int  \dfrac{x^3}{x^4-2} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int  \dfrac{x}{4x^2+1} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int  \dfrac{9x}{(3x+2)^7} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int \dfrac{\cos^5x}{\sin^2x} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int \dfrac{\cos x}{\sin^5x} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int  \dfrac{1}{x\ln x\ln(\ln x)} dx и выбрать правильный вариант:
Вычислить неорпеделенный интеграл методом замены переменной f(x) =\int  \dfrac{\ln^2 x}{x} dx и выбрать правильный вариант: