База ответов ИНТУИТ

Введение в математические модели механики сплошных сред

<<- Назад к вопросам

Для увеличения площади поверхности жидкости на величину \Delta \sum необходимо из-за наличия поверхностного натяжения совершить работу \Delta A = \sigma \Delta \sum, где \sigma — коэффициент поверхностного натяжения. На какую высоту можно поднять 1 л воды с помощью количества работы, которого необходимо затратить, чтобы разделить 1 л воды на капли диаметром 0,01 мм? Принять, что \sigma=73дин/см

(Отметьте один правильный вариант ответа.)

Варианты ответа
\Delta h \approx 3,25м
\Delta h \approx 2,73м
\Delta h \approx 4,46м(Верный ответ)
\Delta h \approx 4,06м
Похожие вопросы
Для увеличения площади поверхности жидкости на величину \Delta \sum необходимо из-за наличия поверхностного натяжения совершить работу \Delta A = \sigma \Delta \sum, где \sigma — коэффициент поверхностного натяжения. На сколько градусов можно поднять температуру 1 л воды перемешиванием за счет количества работы, которого необходимо затратить, чтобы разделить 1 л воды на капли диаметром 0,01 мм? Принять, что \sigma=73дин/см, потери тепла во внешнюю среду не учитывать
Для увеличения площади поверхности жидкости на величину \Delta \sum необходимо из-за наличия поверхностного натяжения совершить работу \Delta A = \sigma \Delta \sum, где \sigma — коэффициент поверхностного натяжения. Какую работу необходимо затратить, чтобы разделить 1 л воды на капли диаметром 0,01 мм? Принять, что \sigma=73дин/см
Чему равно изменение энтропии упругого стального стержня, длина которого 1 м, площадь поперечного сечения 1 см2, при его изотермическом растяжении до 1,001 м при температуре 15°С. Считать, что для стали модуль Юнга E = 2 \cdot {10^6}кгс/{см^2}, коэффициент Пуассона \sigma  = 0,25, удельная теплоемкость при постоянных деформациях c = 0,46кдж/(кг \cdot град), коэффициент линейного теплового расширения \alpha  = 12 \cdot {10^{ - 6}}1/град. Модуль Юнга и коэффициент Пуассона выражаются через коэффициенты Ламе по формулам: E = \mu \frac{{3\lambda  + 2\mu }}{{\lambda  + \mu }},\sigma  = \frac{\lambda }{{2(\lambda  + \mu )}}
Чему равна величина растягивающей силы упругого стального стержня, длина которого 1 м, площадь поперечного сечения 1 см2, при его изотермическом растяжении до 1,001 м при температуре 15°С. Считать, что для стали модуль Юнга E = 2 \cdot {10^6}кгс/{см^2}, коэффициент Пуассона \sigma  = 0,25, удельная теплоемкость при постоянных деформациях c = 0,46кдж/(кг \cdot град), коэффициент линейного теплового расширения \alpha  = 12 \cdot {10^{ - 6}}1/град. Модуль Юнга и коэффициент Пуассона выражаются через коэффициенты Ламе по формулам: E = \mu \frac{{3\lambda  + 2\mu }}{{\lambda  + \mu }},\sigma  = \frac{\lambda }{{2(\lambda  + \mu )}}
Вычислить компоненту e_{22}^{(d)} девиатора тензора скоростей деформаций e_{ij}^{(d)} = {e_{ij}} - \frac{1}{3}{e_{kk}}{\delta _{ij}} в пространственной декартовой системе координат ({x_i}) для течений среды с полями скорости, имеющими в этих координатах компоненты: {\upsilon _1} = A{x_1},{\upsilon _2} = B{x_2},{\upsilon _3} = 0, где A,B = const
Вычислить компоненту e_{33}^{(d)} девиатора тензора скоростей деформаций e_{ij}^{(d)} = {e_{ij}} - \frac{1}{3}{e_{kk}}{\delta _{ij}} в пространственной декартовой системе координат ({x_i}) для течений среды с полями скорости, имеющими в этих координатах компоненты: {\upsilon _1} = A{x_1},{\upsilon _2} = B{x_2},{\upsilon _3} = 0, где A,B = const
Вычислить компоненту e_{11}^{(d)} девиатора тензора скоростей деформаций e_{ij}^{(d)} = {e_{ij}} - \frac{1}{3}{e_{kk}}{\delta _{ij}} в пространственной декартовой системе координат ({x_i}) для течений среды с полями скорости, имеющими в этих координатах компоненты: {\upsilon _1} = A{x_1},{\upsilon _2} = B{x_2},{\upsilon _3} = 0, где A,B = const
Вычислить компоненту e_{11}^{(d)} девиатора тензора скоростей деформаций e_{ij}^{(d)} = {e_{ij}} - \frac{1}{3}{e_{kk}}{\delta _{ij}} в пространственной декартовой системе координат ({x_i}) для течений среды с полями скорости, имеющими в этих координатах компоненты: {\upsilon _1} = \alpha t{x_1},{\upsilon _2} = {\upsilon _3} = 0, где \alpha = const
Вычислить компоненту e_{22}^{(d)} девиатора тензора скоростей деформаций e_{ij}^{(d)} = {e_{ij}} - \frac{1}{3}{e_{kk}}{\delta _{ij}} в пространственной декартовой системе координат ({x_i}) для течений среды с полями скорости, имеющими в этих координатах компоненты: {\upsilon _1} = \alpha t{x_1},{\upsilon _2} = {\upsilon _3} = 0, где \alpha = const
Вычислить компоненту e_{33}^{(d)} девиатора тензора скоростей деформаций e_{ij}^{(d)} = {e_{ij}} - \frac{1}{3}{e_{kk}}{\delta _{ij}} в пространственной декартовой системе координат ({x_i}) для течений среды с полями скорости, имеющими в этих координатах компоненты: {\upsilon _1} = \alpha t{x_1},{\upsilon _2} = {\upsilon _3} = 0, где \alpha = const