База ответов ИНТУИТ

Введение в математический анализ

<<- Назад к вопросам

Если f(x) \leqslant \varphi(x) для \forall x \in U(a) и \exists \lim\limits_{x \to a} {f(x)} = A, \lim\limits_{x \to a} {\varphi (x)} = B, то

(Отметьте один правильный вариант ответа.)

Варианты ответа
A \geqslant B
A = B
A \leqslant B(Верный ответ)
Похожие вопросы
Если \psi(x) \leqslant f(x) \leqslant \varphi(x) для \forall x \in U(a) и \exists \lim\limits_{x \to a} {\psi(x)} = A, \lim\limits_{x \to a} {\varphi(x)} = A, то \lim\limits_{x \to a} {f(x)}
Если последовательность \{a_n\} является бесконечно малой, а \{ b_n \} - ограниченной (\forall B \in R : b_n \leq B \, \forall n ) , то \lim\limits_{n \to \infty} {a_n \cdot b_n} равен
По определению, последовательность \{a_n\} называется бесконечно большой (\lim\limits_{n \to \infty} {a_n} = \infty) , если \forall M > 0 \enskip \exists N : \forall n > N
Если последовательность \{a_n\} такова, что \forall \varepsilon > 0 неравенство |a_n| > \varepsilon выполняется лишь для конечного числа членов последовательности, то её предел \lim\limits_{n \to \infty} {a_n} равен
Функция \alpha (x) называется бесконечно малой функцией при x, стремящемся к a, если \forall \varepsilon > 0 \exists \delta > 0 : \forall x \neq a
Последовательность \{a_n\} монотонно возрастает, а \{b_n\} убывает, причем a_n < b_n \, \forall n и \lim\limits_{n \to \infty} {(b_n - a_n)} = 0 . Тогда по принципу вложенных отрезков
Если последовательность \{a_n\} является бесконечно большой, причем a_n \neq 0 \, \forall n . Тогда \lim\limits_{n \to \infty} {\frac 1 {a_n}} равен
Если последовательность \{a_n\} является бесконечно малой, причем a_n \neq 0 \, \forall n , тогда \lim\limits_{n \to \infty} {\frac 1 {a_n}} равен
Если последовательность \{a_n\} такова, что интервал (-M, M) при любом M содержит только конечное число членов последовательности, то ее предел \lim\limits_{n \to \infty} {a_n} равен
Пусть \alpha (x), \beta (x), \alpha_1 (x), \beta_1 (x) - бесконечно малые при x \to x_0 функции, причём \alpha (x) \sim \alpha_1 (x) и \beta (x) \sim \beta_1 (x). Если \exists \lim\limits_{x \to x_0} {\frac {\alpha (x)} {\beta (x)}} = \infty, то