База ответов ИНТУИТ

Введение в математический анализ

<<- Назад к вопросам

Функция \alpha (x) называется бесконечно малой функцией при x, стремящемся к a, если \forall \varepsilon > 0 \exists \delta > 0 : \forall x \neq a

(Отметьте один правильный вариант ответа.)

Варианты ответа
\forall \varepsilon > 0 \, \exists \delta > 0 : \forall x \neq a |x-a| < \delta \Rightarrow |\alpha (x)| < \varepsilon(Верный ответ)
\exists \varepsilon > 0 \, \forall \delta > 0 : \exists x \neq a |x-a| < \delta \Rightarrow |\alpha (x)| > \varepsilon
\exists \varepsilon < 0 \, \forall \delta > 0 : \exists x \neq a |x-a| <\varepsilon \Rightarrow |\alpha (x)| >  \delta
\forall \varepsilon > 0 \, \exists \delta > 0 : \forall x \neq a |x-a| < \varepsilon \Rightarrow |\alpha (x)| < \delta
Похожие вопросы
Функция \alpha (x) называется бесконечно малой функцией при x, стремящемся к a, если \lim\limits_{x \to a} {\alpha (x)} равен
Функция \alpha (x) называется бесконечно большой функцией при x, стремящемся к a, если \lim\limits_{x \to a} {\alpha (x)} равен
Если последовательность \{a_n\} является бесконечно малой, а \{ b_n \} - ограниченной (\forall B \in R : b_n \leq B \, \forall n ) , то \lim\limits_{n \to \infty} {a_n \cdot b_n} равен
По определению, число A называется пределом последовательности \{a_n\}, если \forall \varepsilon > 0 \enskip \exists N : \forall n > N справедливо неравенство
Пусть для функции f(x) выполнено условие \forall \varepsilon > 0 \enskip \exists \delta (\varepsilon): \forall x',x'' \in (a,b) \enskip |x' - x''| < \delta \Rightarrow |f(x') - f(x'')| < \varepsilon. Это означает, что функция f(x)
По определению, последовательность \{a_n\} называется бесконечно большой (\lim\limits_{n \to \infty} {a_n} = \infty) , если \forall M > 0 \enskip \exists N : \forall n > N
Если функция f(x) непрерывна в точке x_0 и f(x_0) < 0,то \exists \delta > 0 : \forall x \in U(\delta , x_0)
Если последовательность \{a_n\} такова, что \forall \varepsilon > 0 неравенство |a_n| > \varepsilon выполняется лишь для конечного числа членов последовательности, то её предел \lim\limits_{n \to \infty} {a_n} равен
Если \alpha (x) - б.м.ф. при x \to a, а функция f(x) имеет в точке a конечный предел, отличный от нуля, то предел частного \alpha (x) / f(x)
Если \alpha (x) - б.м.ф. при x \to a, а функция f(x) имеет конечный предел в точке a, то предел произведения \alpha (x) \cdot f(x)