База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть задача линейного программирования сформулирована следующим образом: максимизировать cTx при ограничениях Аx≤b; x≥0;. Данная форма записи является:

(Отметьте один правильный вариант ответа.)

Варианты ответа
канонической формой
матричной формой(Верный ответ)
общей формой
Похожие вопросы
Задача линейного программирования имеет вид: максимизировать Σсixi, i=1,...,n при условиях A1x1+A2x2+...+Anxn≤b; Данная форма записи является:
Задача линейного программирования сформулирована в матричной форме: максимизировать cTx при ограничениях Аx≤b; x≥0;. Тогда ограничения имеют вид:
Пусть задача линейного программирования задана в канонической форме: максимизировать L(x) = Σcjxj, j=1,...,n при условиях ΣAjxj = b, j=1,...,n, xj ≥ 0. Предположим, что n ≥ m и ранг матрицы A равен m. Тогда двойственная задача имеет вид:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Пусть существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Тогда вектор Δ*:
Пусть задача линейного программирования имеет вид: максимизировать Σсixi, i=1,...,n при условиях
        a11x1 + a12x2+...+a1nxn ≤ b1        a21x1 + a22x2+...+a2nxn ≤ b2                   (1)        .........................        am1x1 + am2x2+...+amnxn ≤ bn, x1≥0,x1≥0,...,xn≥0.        
Тогда множество R(x) является допустимым множеством решений данной задачи, если оно удовлетворяет условиям:
Пусть задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Известно, что существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Функции gi(x) удовлетворяют условию регулярности Слейтера. Тогда:
Если прямая задача линейного программирования имеет вид: максимизировать Σcjxj, j=1,...,n при условиях Σaijxj≤bi, i=1,...,m1<m; Σaijxj=bi, i=m1+1,m1+2,...,m; xj≥0; j=1,...,n1<n. Тогда двойственная ей задача имеет вид: минимизировать Σbiyi. Условия ограничения двойственной задачи имеют вид:
Пусть дана прямая задача: максимизировать Σcjxj, j=1,...,n при ограничениях Σaijxj≤b, i=1,...,m, xj≥0, j=1,...,n. Если в оптимальном решении данной задачи i–е ограничение выполняется как неравенство, то оптимальное значение соответствующей двойственной переменной:
Пусть дана прямая задача: максимизировать Σcjxj, j=1,...,n при ограничениях Σaijxj≤b, i=1,...,m, xj≥0, j=1,...,n. Если оптимальное значение соответствующей двойственной переменной равно нулю, то в оптимальном решении данной задачи i–е ограничение выполняется:
Пусть задача линейного программирования имеет вид: максимизировать Σсixi, i=1,...,n при условиях
        a11x1 + a12x2+...+a1nxn ≤ b1        a21x1 + a22x2+...+a2nxn ≤ b2                   (1)        .........................        am1x1 + am2x2+...+amnxn ≤ bn, x1≥0,x1≥0,...,xn≥0.        
Тогда допустимым множеством решений задачи называется: