База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть дана прямая задача: максимизировать Σcjxj, j=1,...,n при ограничениях Σaijxj≤b, i=1,...,m, xj≥0, j=1,...,n. Если в оптимальном решении данной задачи i–е ограничение выполняется как неравенство, то оптимальное значение соответствующей двойственной переменной:

(Отметьте один правильный вариант ответа.)

Варианты ответа
положительно
равно нулю(Верный ответ)
неотрицательно
Похожие вопросы
Пусть дана прямая задача: максимизировать Σcjxj, j=1,...,n при ограничениях Σaijxj≤b, i=1,...,m, xj≥0, j=1,...,n. Если оптимальное значение соответствующей двойственной переменной равно нулю, то в оптимальном решении данной задачи i–е ограничение выполняется:
Если в оптимальном решении некоторой задачи i–е ограничение выполняется как строгое неравенство и оптимальное значение соответствующей двойственной переменной равно нулю, то данная задача является:
Если в оптимальном решении двойственной задачи ограничение j выполняется как строгое неравенство, то оптимальное решение соответствующей переменной прямой задачи:
Если в оптимальном решении некоторой задачи ограничение j выполняется как строгое неравенство и при этом оптимальное значение переменной прямой задачи равно нулю, то данная задача является:
Если оптимальное значение переменной прямой задачи равно нулю, то в оптимальном решении двойственной задачи ограничение j выполняется как:
Если прямая задача линейного программирования имеет вид: максимизировать Σcjxj, j=1,...,n при условиях Σaijxj≤bi, i=1,...,m1<m; Σaijxj=bi, i=m1+1,m1+2,...,m; xj≥0; j=1,...,n1<n. Тогда двойственная ей задача имеет вид: минимизировать Σbiyi. Условия ограничения двойственной задачи имеют вид:
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Допустим, что существует такая точка x*, в которой достигается относительный экстремум данной задачи. Если ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,n в точке x* равен m, то существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых:
Пусть задача линейного программирования имеет вид: максимизировать Σсixi, i=1,...,n при условиях
        a11x1 + a12x2+...+a1nxn ≤ b1        a21x1 + a22x2+...+a2nxn ≤ b2                   (1)        .........................        am1x1 + am2x2+...+amnxn ≤ bn, x1≥0,x1≥0,...,xn≥0.        
Тогда множество R(x) является допустимым множеством решений данной задачи, если оно удовлетворяет условиям:
Пусть задача линейного программирования задана в канонической форме: максимизировать L(x) = Σcjxj, j=1,...,n при условиях ΣAjxj = b, j=1,...,n, xj ≥ 0. Предположим, что n ≥ m и ранг матрицы A равен m. Тогда двойственная задача имеет вид:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что: