База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Если для всех действительных x1, x2, таких, что f(x1) ≠ f(x2) и λ є (0;1) выполняется неравенство f(λx1 + (1–λ)x1) < max{f(x1),f(x2)}, то функция f(x) является:

(Отметьте один правильный вариант ответа.)

Варианты ответа
строго квазивыпуклой(Верный ответ)
строго квазивогнутой
ни строго квазивыпуклой, ни строго квазивогнутой
Похожие вопросы
Функция f(x) является строго квазивыпуклой, если для всех действительных x1, x2 таких, что f(x1) ≠ f(x2) и λ є (0;1) выполняется неравенство:
Дана функция F(x). Известно, что x' доставляет некоторый экстремум функции F(x) на интервале [a; b] с заданной точностью ξ. При этом F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, т.е. b = x, то:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что:
Пусть функция f(x) является строго квазивыпуклой и выполняется неравенство f(λx1 + (1–λ)x1) < max{f(x1),f(x2)}. При этом для всех действительных x1, x2 выполняется условие:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 - значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, то:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Если некоторая точка x' является точкой глобального минимума рассматриваемой задачи, то x' одновременно является:
Пусть функция f(x) на некотором множестве R является квазивыпуклой, т.е. для любых x1, x2 є R и λ є [0;1] выполняется неравенство f(λx1 + (1–λ)x1) ≤ max{f(x1),f(x2)}.Тогда множество R является:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Пусть функция f(x) определена на непустом и выпуклом множестве R. Функция f(x) квазивыпукла, если для любых x1, x2 є R и λ є [0;1] выполняется неравенство: