База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пара векторов x*, Δ* для которых выполняется условие: для всех Δ ≥ 0, x є Rn L(x*, Δ) ≤ L(x*, Δ*) ≤ L(x, Δ*), называется:

(Отметьте один правильный вариант ответа.)

Варианты ответа
седловой точкой функции Лагранжа(Верный ответ)
условием регулярности Слейтера
условием дополняющей нежесткости
Похожие вопросы
Пара векторов x*, Δ* называется седловой точкой функции Лагранжа L(x,Δ), если при всех Δ ≥ 0, x є Rn выполняется условие:
Если для пары векторов x*, Δ*, которая носит название седловой точки функции Лагранжа L(x,Δ), выполняется условие L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*), то оно справедливо:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Согласно метода Ньютона, начальные приближения x выбирают в такой точке интервала [a; b], где знаки функции f(x) и ее кривизны f''(x) совпадают, т.е. выполняется условие:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Пусть функция f(x) определена на непустом и выпуклом множестве R. При этом для функции f(x) выполняется условие: для любых x1, x2 є R и λ є [0;1] f(λx1 + (1–λ)x1) ≤ max{f(x1),f(x2)}. Тогда функция f(x):
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Допустим, что существует такая точка x*, в которой достигается относительный экстремум данной задачи. Если ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,n в точке x* равен m, то существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), то существуют такие неотрицательные множители Лагранжа λ1,...,λm, что справедливы соотношения:
Дана функция F(x). Пусть x' доставляет минимум функции F(x) на интервале [a; b] с заданной точностью ξ. Известно, что F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. При поиске минимума был отброшен отрезок [x; b], т.е. b = x. Это значит, что:
Пусть функция f(x) является строго квазивыпуклой и выполняется неравенство f(λx1 + (1–λ)x1) < max{f(x1),f(x2)}. При этом для всех действительных x1, x2 выполняется условие: