База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Методы, использующие штрафные функции, определяются?

(Отметьте один правильный вариант ответа.)

Варианты ответа
видом целевой функции
видом штрафной функции(Верный ответ)
видом штрафа
Похожие вопросы
Параметрические методы подразделяются на...?
Методы внешней точки генерируют последовательность точек, которые...?
Квазиньютоновские методы обладают чертами метода Ньютона, но используют только ...?
Если штраф создает барьер из больших значений Р вдоль границы допустимой области, эти методы называются...?
Известно, что если направление градиента является направлением наискорейшего возрастания функции, то противоположное направление является направлением наискорейшего убывания функции. Это свойство присуще:
Если значения целевой функции прямой задачи никогда не превышают значений целевой функции двойственной задачи, т.е. cTx0≤bTy0, то допустимые решения прямой и двойственной задач имеют вид:
Пусть функция F(x) вогнута (выпукла), и ее первая производная монотонна. Для нахождения экстремума функции F(x) методом Ньютона начальные приближения x выбирают в такой точке интервала [a; b], где знаки функции f(x) и ее кривизны f''(x):
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), то существуют такие неотрицательные множители Лагранжа λ1,...,λm, что справедливы соотношения:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m: