База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Псевдоплан x={xi0} является оптимальным решением прямой задачи, если среди его базисных компонентов:

(Отметьте один правильный вариант ответа.)

Варианты ответа
нет положительных
имеются отрицательные
нет отрицательных(Верный ответ)
Похожие вопросы
Псевдоплан x={xi0}, среди базисных компонентов которого нет отрицательных, является оптимальным решением:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. При этом псевдоплан x является оптимальным решением и A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда для базисных компонентов справедливо условие:
Если среди базисных компонентов псевдоплана x нет отрицательных, то псевдоплан x={xi0} является:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. Базисные компоненты псевдоплана удовлетворяют условиям xi = xi0≥0 для всех i є Iδ. При этом псевдоплан x является оптимальным решением. Тогда справедливы соотношения:
Пусть некоторому сопряженному базису \{ A_i \}_{i \in I \delta} соответствует псевдоплан x. Очевидно, Aj=ΣAixij; A0=ΣAixi, i є Iδ. Известно, что среди базисных компонентов xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n. Это значит, что:
Пусть некоторому сопряженному базису \{ A_i \}_{i \in I \delta} соответствует псевдоплан x. Среди базисных компонентов xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n. Это значит, что задача неразрешима. Следовательно, справедливы соотношения:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Если некоторая точка x' является точкой глобального минимума рассматриваемой задачи, то x' одновременно является:
Если в оптимальном решении некоторой задачи ограничение j выполняется как строгое неравенство и при этом оптимальное значение переменной прямой задачи равно нулю, то данная задача является:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Вектор x* решением задачи нелинейного программирования: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m тогда и только тогда, когда существует такой вектор Δ* ≥ 0, для которого выполняются условия:
Если в двойственной задаче допустимый вектор x0 является оптимальным и при этом выполняется условие cTx0=bTy0, то: