База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Если среди базисных компонентов псевдоплана x нет отрицательных, то псевдоплан x={xi0} является:

(Отметьте один правильный вариант ответа.)

Варианты ответа
оптимальным решением прямой задачи(Верный ответ)
оптимальным решением двойственной задачи
допустимым решением прямой задачи
Похожие вопросы
Псевдоплан x={xi0}, среди базисных компонентов которого нет отрицательных, является оптимальным решением:
Пусть некоторому сопряженному базису \{ A_i \}_{i \in I \delta} соответствует псевдоплан x. Очевидно, Aj=ΣAixij; A0=ΣAixi, i є Iδ. Известно, что среди базисных компонентов xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n. Это значит, что:
Псевдоплан x={xi0} является оптимальным решением прямой задачи, если среди его базисных компонентов:
Пусть некоторому сопряженному базису \{ A_i \}_{i \in I \delta} соответствует псевдоплан x. Среди базисных компонентов xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n. Это значит, что задача неразрешима. Следовательно, справедливы соотношения:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. Базисные компоненты псевдоплана удовлетворяют условиям xi = xi0≥0 для всех i є Iδ. При этом псевдоплан x является оптимальным решением. Тогда справедливы соотношения:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. При этом псевдоплан x является оптимальным решением и A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда для базисных компонентов справедливо условие:
Пусть f(x) – строго квазивыпуклая функция. Рассмотрим задачу минимизации f(x) при условии, что x є R, где R – непустое выпуклое множество в Е(n). Если некоторая точка x' является точкой глобального минимума рассматриваемой задачи, то x' одновременно является:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если для функции f(x) ограничения gi(x) ≤ 0, i=1,...,m удовлетворяют условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m является:
Дана функция F(x). Известно, что x' доставляет некоторый экстремум функции F(x) на интервале [a; b] с заданной точностью ξ. При этом F1 и F2 – значения функции F(x) в окрестности ±ξ вычисленной точки x=(a+b)/2. Если F1 < F2, т.е. b = x, то:
Пусть функции gi(x), i=1,...,m имеют непрерывные частные производные на некотором открытом множестве Rn, содержащем точку x*. Если x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), то существуют такие неотрицательные множители Лагранжа λ1,...,λm, что справедливы соотношения: