База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Для табличного симплекс – метода в качестве начального базиса выбран базис из свободных переменных, для которых ci = 0. Соответствующее значение целевой функции определяется соотношением a00 = Σcixi = 0, i є I. Тогда оценки для всех небазисных переменных равны:

(Отметьте один правильный вариант ответа.)

Варианты ответа
Δj=a0j=cj
Δj=a0j=-cj(Верный ответ)
Δj=-a0j=-cj
Похожие вопросы
Если для табличного симплекс – метода в качестве начального базиса выбирают базис из свободных переменных, для которых ci = 0, и оценки для всех небазисных переменных равны Δj=a0j=-cj, то соответствующее значение целевой функции определяется соотношением:
Если для табличного симплекс – метода оценки для всех небазисных переменных равны Δj=a0j=-cj, а соответствующее значение целевой функции a00 = Σcixi = 0, i є I;, то в качестве начального базиса выбран базис:
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Пусть в некоторой точке x* ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,nравен m, и существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых Δf(x*) + ΣλiΔhi(x) = 0, i = 1,...,m. Тогда в точке x*:
Пусть задача нелинейного программирования задана в виде: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Допустим, что существует такая точка x*, в которой достигается относительный экстремум данной задачи.Известно, что существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых Δf(x*) + ΣλiΔhi(x) = 0, i = 1,...,m. Тогда:
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Допустим, что существует такая точка x*, в которой достигается относительный экстремум данной задачи. Если ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,n в точке x* равен m, то существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых:
Пусть некоторое открытое множество Rn содержит точку x*. Известно, что x* является точкой минимума функции f(x) при ограничениях gi(x) ≤ 0, i=1,...,m, удовлетворяющих условию регулярности в виде линейной независимости векторов Δgi(x*), и существуют такие неотрицательные множители Лагранжа λ1,...,λm, что Δf(x*) + ΣλiΔgi(x*) = 0;Σλigi(x*) = 0, λi ≥ 0, i = 1,...,m. Тогда функции gi(x), i = 1,...,m:
Если задача линейного программирования содержит n переменных и m ограничений, не считая ограничений неотрицательности переменных xi ≥ 0, и в оптимальное решение входит не более чем m ненулевых компонент вектора x, то выполняется условие:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Вектор x* решением задачи нелинейного программирования: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m тогда и только тогда, когда существует такой вектор Δ* ≥ 0, для которого выполняются условия:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. Базисные компоненты псевдоплана удовлетворяют условиям xi = xi0≥0 для всех i є Iδ. При этом псевдоплан x является оптимальным решением. Тогда справедливы соотношения:
Если задача линейного программирования содержит n переменных и m ограничений, записанных в форме неравенств (n > m), не считая ограничений неотрицательности переменных xi ≥ 0, то в оптимальное решение входит: