База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Какой функцией является перестановка на двух битах g\colon{} \cb^2\to \cb^2:

(Отметьте один правильный вариант ответа.)

Варианты ответа
нелинейной
обратимой
линейной(Верный ответ)
Похожие вопросы
Перестановка, реализуемая обратимой схемой, является (\calA - некоторое множество перестановок вида G\colon\cb^k \to \cb^k):
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
Если существует квантовый алгоритм вычисления функции F\colon\cb^*\to\cb^*, работающий за время O(n^d) для некоторой константы d, то функция F\colon\cb^*\to\cb^*
Каким условиям должны удовлетворять операторы U_n\colon \BB^{\otimes N_n}\to \BB^{\otimes N_n}, реализуемые однородной последовательностью квантовых схем полиномиального по n размера, чтобы функция F\colon \cb^n\to \{0,\,1,\,\} принадлежала классу BQNP:
Последовательность перестановок U_1[A_1],\dots, U_l[A_l], где A_j - множества битов, U_j\in\calA, \calA - некоторое множество перестановок вида G\colon\cb^k \to \cb^k является:
Какому классу принадлежит функция F\colon \cb^n\to \{0,\,1,\,\}, если существует однородная последовательность квантовых схем полиномиального по n размера, реализующих такие операторы U_n\colon \BB^{\otimes N_n}\to \BB^{\otimes N_n}, что F_n(x)=1 & \Longrightarrow & \exists\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \geq p_1,\\ F_n(x)=0 & \Longrightarrow & \forall\, \ket\xi\: \PP\Bigl(U_n\ket\xi\otimes\ket{x}\otimes\ket{0^{N_n-n-m_n}},\calM\Bigr) \leq p_0.
Функция F\colon \cb^n\to \{0,\,1,\, \langle \text{не определено}\rangle}\} принадлежит классу NP, если есть частично определенная функция R\in\P от двух переменных, такая что:
Для любого классического вероятностного алгоритма, делающего не более 2^{k/2} обращений к оракулу (n\geq k), существует подгруппа D\subseteq(\ZZ_2)^k и соответствующая функция f\colon (\ZZ_2)^k\to\cb^n, для которой вероятность ошибки алгоритма:
Функция f(n) является функцией полиномиального роста, если для некоторой константы d при достаточно больших n выполняется неравенство:
Что из перечисленного является характерным для тензорного произведения двух пространств L и M, в которых фиксированы базисы \{e_1,\dots,e_l\} и \{f_1,\dots,f_l\}