База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Для доказательства физической реализации преобразования вида \rho=\sum_{j,k}^{}\rho_{jk}\ket{j}\bra{k} \stackrel{\scriptscriptstyle D}{\mapsto}\sum_{k}^{}\rho_{kk}\ket{k}\bra{k} на завершающем шаге необходимым является:

(Отметьте один правильный вариант ответа.)

Варианты ответа
взятие частичного следа по добавленным битам(Верный ответ)
добавление нулевых битов
обратимое копирование исходных битов
Похожие вопросы
Выполнение каких действий необходимо для доказательства физической реализации преобразования вида \rho=\sum_{j,k}^{}\rho_{jk}\ket{j}\bra{k} \stackrel{\scriptscriptstyle D}{\mapsto}\sum_{k}^{}\rho_{kk}\ket{k}\bra{k}:
В случае изометрического вложение V\colon \BB^{\otimes n} \double\to \BB^{\otimes N} в пространство большей размерности, задаваемое формулой \ket\xi\stackrel{\scriptscriptstyle V}{\mapsto} \ket\xi\otimes\ket{0^{N-n}}, матрица плотности \rho преобразуется:
Если унитарный оператор  U разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1, то  \Lambda(U)=\sum_{j} (\Pi_0+\lambda_j\Pi_1)\otimes\Pi_{\calL_j}= \sum_{j}^{} \begin{pmatrix} 1&0\\ 0&\lambda_j \end{pmatrix} \otimes\Pi_{\calL_j}. В этом случае условные вероятности будут равны:
В детерминированном измерении \begin{equation}\rho\ \mapsto\ \sum_{j}^{}\PP(\rho,\calL_j)\left(\gamma^{(j)},j\right), \end{equation} \gamma^{(j)} выступает в качестве:
Чему равна суммарная длина (F(x),z) и (x,O^{N-n}) в формуле \sum_{z}^{} \bigl| \langle F(x),z|\,U\,|x,0^{N-n}\rangle\bigr|^2 \geq \varepsilon, которой должна удовлетворять квантовая схема U=U_L\cdot\ldots\cdot U_2U_1, вычисляющая F:
Преобразование матриц плотности \begin{equation}\rho\ \mapsto\ \sum_{j}^{}\PP(\rho,\calL_j)\left(\gamma^{(j)},j\right), \end{equation} где \gamma^{(j)}=\PP(\rho,\calL_j)^{-1}\times\Pi_{\calL_j} \rho\Pi_{\calL_j}, называется:
Каким условиям удовлетворяют операторы вида \rho=\sum_{k}^{}p_k\ket{\xi_k}\bra{\xi_k}:
Почему  U в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U можно разложить в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?
В формуле \sum_{z}^{} \bigl| \langle F(x),z|\,U\,|x,0^{N-n}\rangle\bigr|^2 \geq \varepsilon, которой должна удовлетворять квантовая схема U=U_L\cdot\ldots\cdot U_2U_1, вычисляющая F, значение \varepsilon:
Можно ли в операторе \Lambda(U)=\Pi_0\otimes I + \Pi_1\otimes U разложить  U в сумму проекторов на собственные подпространства следующим образом:  U=\sum_{j} \lambda_j\Pi_{\calL_j} , |\lambda_j|=1?