База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Размерность дна оврага определяется числом малых собственных значений матрицы

(Отметьте один правильный вариант ответа.)

Варианты ответа
Гессе(Верный ответ)
производных
Стьюдента
Похожие вопросы
Если штраф создает барьер из больших значений Р вдоль границы допустимой области, эти методы называются...?
В каком из методов происходит сравнение значений функции в (n + 1) вершинах симплекса и перемещении симплекса в направлении оптимальной точки с помощью итерационной процедуры?
Для табличного симплекс – метода в качестве начального базиса выбран базис из свободных переменных, для которых ci = 0. Соответствующее значение целевой функции определяется соотношением a00 = Σcixi = 0, i є I. Тогда оценки для всех небазисных переменных равны:
Если для табличного симплекс – метода в качестве начального базиса выбирают базис из свободных переменных, для которых ci = 0, и оценки для всех небазисных переменных равны Δj=a0j=-cj, то соответствующее значение целевой функции определяется соотношением:
Пусть ограничения задачи линейного программирования записаны в виде: A1x1+A2x2+...+Anxn+An+1xn+1+...+An+mxn+m=A0, где А1,...,Аm – множество линейно независимых векторов. Согласно симплекс – метода, базисное решение x^*_1, x^*_2, \ldots, x^*_m определяется уравнением:
Если значения целевой функции прямой задачи никогда не превышают значений целевой функции двойственной задачи, т.е. cTx0≤bTy0, то допустимые решения прямой и двойственной задач имеют вид:
Пусть задача линейного программирования задана в канонической форме: максимизировать L(x) = Σcjxj, j=1,...,n при условиях ΣAjxj = b, j=1,...,n, xj ≥ 0. Предположим, что n ≥ m и ранг матрицы A равен m. Тогда двойственная задача имеет вид:
Сопряженным базисом называется такая система из m линейно - независимых векторов матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, для которой базисное решение y соответствующей системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям:
Пусть задана задача нелинейного программирования: минимизировать f(x1,...,xn) при условиях
h1(x1,...,xn) = 0;h2(x1,...,xn) = 0;...............hm(x1,...,xn) = 0. 
Допустим, что существует такая точка x*, в которой достигается относительный экстремум данной задачи. Если ранг матрицы I = [δhj(x)/δxj], i = 1,...,m; j = 1,...,n в точке x* равен m, то существуют m чисел λ1,...,λn, не все из которых равны нулю одновременно, и при которых:
Пусть некоторое базисное решение y системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда вектора матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, составляющие сопряженный базис, являются: