База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Сопряженным базисом называется такая система из m линейно - независимых векторов матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, для которой базисное решение y соответствующей системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям:

(Отметьте один правильный вариант ответа.)

Варианты ответа
A^T_j y \le c_j, \sum a_{\mu}y_{\mu} \le c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n
A^T_j y  =  c_j, \sum a_{\mu}y_{\mu} > c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n
A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n (Верный ответ)
Похожие вопросы
Пусть для некоторой системы, состоящей из m линейно - независимых векторов матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, базисное решение y соответствующей системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда данная система носит название:
Пусть некоторое базисное решение y системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда вектора матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, составляющие сопряженный базис, являются:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x, базисные компоненты которого xi = xi0≥0 для всех i є Iδ. При этом A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда:
Пусть ограничения задачи линейного программирования записаны в виде: A1x1+A2x2+...+Anxn+An+1xn+1+...+An+mxn+m=A0, где А1,...,Аm – множество линейно независимых векторов. Согласно симплекс – метода, базисное решение x^*_1, x^*_2, \ldots, x^*_m определяется уравнением:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. При этом псевдоплан x является оптимальным решением и A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда для базисных компонентов справедливо условие:
Рассмотрим задачу нелинейного программирования: минимизировать f(x) при g_i(x) = - \eta^T_i x + b_i \le 0,  i = 1,\ldots,m. Для входящего вектора справедливы следующие условия: \Delta g^T_i(x – x^*) \le 0 или \Delta f(x^*)(x – x^*) \ge 0 для всех x є S. Тогда множество неотрицательных скаляров i} ≥ 0, для которых справедливо соотношение:
Рассмотрим задачу нелинейного программирования: минимизировать f(x) при g_i(x) = - \eta^T_i x + b_i \le 0,  i = 1,\ldots,m. Для входящего вектора справедливы следующие условия: \Delta g^T_i(x – x^*) \le 0 или \Delta f(x^*)(x – x^*) \ge 0 для всех x є S.Тогда скаляры i}, для которых справедливо соотношение Δf(x*)=Σλiηi(x) = -ΣλiΔgi(x*), i є I, являются:
Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается соотношениями x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Тогда уравнение, определяющее старое базисное решение x^*_1, x^*_2, \ldots, x^*_m, имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Тогда связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается следующими соотношениями:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m.Новое решение x'_1, x'_2, \ldots, x'_m, x'_r базисное решение связано со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m соотношениями: x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Данное решение будет допустимым, если: