База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Рассмотрим задачу нелинейного программирования: минимизировать f(x) при g_i(x) = - \eta^T_i x + b_i \le 0,  i = 1,\ldots,m. Для входящего вектора справедливы следующие условия: \Delta g^T_i(x – x^*) \le 0 или \Delta f(x^*)(x – x^*) \ge 0 для всех x є S. Тогда множество неотрицательных скаляров i} ≥ 0, для которых справедливо соотношение:

(Отметьте один правильный вариант ответа.)

Варианты ответа
Δf(x*)=Σλiηi(x) = -ΣλiΔgi(x*), i є I (Верный ответ)
Δf(x*)=-Σλiηi(x) = -ΣλiΔgi(x*), i є I
Δf(x*)=-Σλiηi(x) = ΣλiΔgi(x*), i є I
Похожие вопросы
Рассмотрим задачу нелинейного программирования: минимизировать f(x) при g_i(x) = - \eta^T_i x + b_i \le 0,  i = 1,\ldots,m. Для входящего вектора справедливы следующие условия: \Delta g^T_i(x – x^*) \le 0 или \Delta f(x^*)(x – x^*) \ge 0 для всех x є S.Тогда скаляры i}, для которых справедливо соотношение Δf(x*)=Σλiηi(x) = -ΣλiΔgi(x*), i є I, являются:
Рассмотрим задачу нелинейного программирования: минимизировать f(x) при g_i(x) = - \eta^T_i x + b_i \le 0,  i = 1,\ldots,m. Известно, что существует множество неотрицательных скаляров i} ≥ 0, для которых справедливо соотношение Δf(x*)=Σλiηi(x) = -ΣλiΔgi(x*), i є I. Тогда для входящего вектора справедливо условие:
Пусть задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Известно, что существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Функции gi(x) удовлетворяют условию регулярности Слейтера. Тогда:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Пусть существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Тогда вектор Δ*:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x, базисные компоненты которого xi = xi0≥0 для всех i є Iδ. При этом A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. При этом псевдоплан x является оптимальным решением и A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда для базисных компонентов справедливо условие:
Пусть для некоторой системы, состоящей из m линейно - независимых векторов матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, базисное решение y соответствующей системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда данная система носит название:
Пусть двойственная задача линейного программирования имеет вид: минимизировать L'_{\partial e}(y) = \sum b_{\mu} y_{\mu}, \mu = 1,\ldots,m при условиях A^T_j y \ge c_j, \sum a_{\mu} y_{mu} \ge c_j, \mu = 1,\ldots,m,  j=1,\ldots,n и при этом n ≥ m и ранг матрицы A равен m. Тогда задача, записанная в канонической форме, имеет вид:
Пусть уравнение A_1 x^*_1 + A_2x^*_2 +\ldots + A_n x^*_n + A_{n+1} x^*_{n+1} +\ldots + A_{n+m}x^*_{n+m} = A_0 определяет базисное решение x^*_1, x^*_2, \ldots, x^*_m. Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0 как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Тогда связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается следующими соотношениями:
Обозначим решение уравнения A1x1+A2x2+...+Amxm+Arxr = А0как \{ x'1, x'2, \ldots, x'_m, x'_r \}. Связь нового решения x'_1, x'_2, \ldots, x'_m, x'_r со старым базисным решением x^*_1, x^*_2, \ldots, x^*_m выражается соотношениями x'_1 = x^*_1 - x_r x_{1r}; x'_2 = x^*_2 - x_r x_{2r}; \ldots ; x'_m = x^*_m - x_r x_{mr}, x_r. Тогда уравнение, определяющее старое базисное решение x^*_1, x^*_2, \ldots, x^*_m, имеет вид: