База ответов ИНТУИТ

Классические и квантовые вычисления

<<- Назад к вопросам

Следовая норма оператора A\in\LL(\calN) равна:

(Отметьте один правильный вариант ответа.)

Варианты ответа
\|A\|_\trr=Tr\left(\sqrt{A^2 A}\right)
\|A\|_\trr=Tr\left(\sqrt{A^\dagger}\right)
\|A\|_\trr=Tr\left(\sqrt{A^\dagger A}\right)(Верный ответ)
Похожие вопросы
Если имеется физически реализуемое преобразование T\colon\LL(\calN)\to\LL(\calM), причем для любого чистого состояния \rho выполняется свойство: Tr_{\calF}(T\rho)=\rho, то для любого оператора X справедливым является равенство (\gamma - некоторая фиксированная матрица плотности на пространстве \calF):
При отображении \LL(\calN) в \LL(\calN\otimes\calK), \calN - квантовая часть и \calK - классическая часть системы, результат является диагональным по отношению:
Пусть \calN=\bigoplus_{j}\calN_j - разложение пространства \calN в прямую сумму взаимно ортогональных подпространств. Тогда для любой пары матриц плотности \rho, \gamma
Если имеется чистое состояние \ket{\psi}\in\calN\otimes\calF, то разложение Шмидта имеет вид (0<\lambda_j\le 1, \{\ket{\xi_j}\}\subset\calN и \{\ket{\eta_j}\}\subset\calF - ортонормированные вектора):
Верно ли, что если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде:\PP\Bigl(W(\ket0\bra0\otimes\rho)W^\dagger,\,\CC(\ket{k})\otimes\calN\Bigr) \,=\, \prod\limits_{j} \PP(k\big| j) \PP(\rho, \calL_j)?
Как называется оператор вида W=\sum\limits_{j}^{} \Pi_{\calL_j}\otimes U_j, если в пространстве состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j?
Каким условиям эквивалентна физическая реализуемость линейного оператора T\colon\LL(\calN)\to\LL(\calM) , записанного в координатном виде T(\ket{j}\bra{k})=\sum_{j',k'} T_{(j'j)(k'k)} \ket{j'}\bra{k'}?
Если есть пространство состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j, тогда всякий оператор вида W=\sum\limits_{j}^{} \Pi_{\calL_j}\otimes U_j будет называться:
Если есть пространство состояний \calN\otimes\calK, причем первый сомножитель разложен в прямую сумму попарно ортогональных подпространств: \calN\double=\bigoplus\limits_j \calL_j, тогда измеряющим будет называться всяки оператор вида:
Если применить измеряющий оператор к состоянию  \ket0\bra0\otimes\rho , где  \rho\double\in\LL(\calN) , то вероятность наблюдения состояния  k можно записать в виде: