База ответов ИНТУИТ

Введение в математическое программирование

<<- Назад к вопросам

Пусть задан некоторый сопряженный базис \{ A_i \}_{i \in I \delta} Ему соответствует псевдоплан x. При этом Aj=ΣAixij; A0=ΣAixi, i є Iδ. Известно, что задача неразрешима. Это значит, что базисные компоненты удовлетворяют условиям:

(Отметьте один правильный вариант ответа.)

Варианты ответа
среди xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n(Верный ответ)
псевдоплан x содержит отрицательные компоненты xi0 < 0, но для каждой из них среди элементов {xij}, j=1,...,n, имеются отрицательные
xi = xi0≥0 для всех i є Iδ
Похожие вопросы
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. Базисные компоненты псевдоплана удовлетворяют условиям xi = xi0≥0 для всех i є Iδ. При этом псевдоплан x является оптимальным решением. Тогда справедливы соотношения:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x, базисные компоненты которого xi = xi0≥0 для всех i є Iδ. При этом A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда:
Пусть известен некоторый сопряженный базис \{ A_i \}_{i \in I \delta}, которому соответствует псевдоплан x. При этом псевдоплан x является оптимальным решением и A_j = \sum A_i x_{ij}; A_0 = \sum A_i x_i, i \in I \delta Тогда для базисных компонентов справедливо условие:
Пусть некоторому сопряженному базису \{ A_i \}_{i \in I \delta} соответствует псевдоплан x. Среди базисных компонентов xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n. Это значит, что задача неразрешима. Следовательно, справедливы соотношения:
Пусть некоторому сопряженному базису \{ A_i \}_{i \in I \delta} соответствует псевдоплан x. Очевидно, Aj=ΣAixij; A0=ΣAixi, i є Iδ. Известно, что среди базисных компонентов xi имеются отрицательные, причем для некоторого i: xi < 0, а все xij ≥ 0, j=1,...,n. Это значит, что:
Пусть задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Известно, что существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Функции gi(x) удовлетворяют условию регулярности Слейтера. Тогда:
Пусть f(x) и все gi(x) выпуклы и все функции gi(x) удовлетворяют условию регулярности Слейтера. Задача нелинейного программирования задана следующим образом: минимизировать f(x) при условиях gi(x) ≤ 0, i = 1,...,m. Пусть существует некоторый вектор Δ* ≥ 0, такой, что L(x*,Δ) ≤ L(x**) ≤ L(x,Δ*) и \Delta^{*T}g(x^*) = \sum \lambda^*_i g_i(x^*) = 0. Тогда вектор Δ*:
Пусть двойственная задача линейного программирования имеет вид: минимизировать L'_{\partial e}(y) = \sum b_{\mu} y_{\mu}, \mu = 1,\ldots,m при условиях A^T_j y \ge c_j, \sum a_{\mu} y_{mu} \ge c_j, \mu = 1,\ldots,m,  j=1,\ldots,n и при этом n ≥ m и ранг матрицы A равен m. Тогда задача, записанная в канонической форме, имеет вид:
Рассмотрим задачу нелинейного программирования: минимизировать f(x) при g_i(x) = - \eta^T_i x + b_i \le 0,  i = 1,\ldots,m. Для входящего вектора справедливы следующие условия: \Delta g^T_i(x – x^*) \le 0 или \Delta f(x^*)(x – x^*) \ge 0 для всех x є S.Тогда скаляры i}, для которых справедливо соотношение Δf(x*)=Σλiηi(x) = -ΣλiΔgi(x*), i є I, являются:
Пусть некоторое базисное решение y системы линейных уравнений вида A^T_i y = c_i, \quad i \in I \delta, удовлетворяет ограничениям A^T_j y \ge c_j, \sum a_{\mu}y_{\mu} \ge c_j, \; \mu = 1,\ldots,m, \;  j = 1,\ldots,n Тогда вектора матрицы ограничений прямой задачи \{ A_i \}_{i \in I \delta}, составляющие сопряженный базис, являются: