Ответы на ИНТУИТ

ИНТУИТ ответы на тесты

Решение тестов / курсов
База ответов ИНТУИТ.RU
Заказать решение курсов или тестов:
https://vk.com/id358194635
https://vk.com/public118569203

Исследование операций и модели экономического поведения

Заказать решение
Количество вопросов 155

Два предприятия, обладающие производственными возможностями Ki, i=1,2, продают на рынке один и тот же вид продукции. Возможности рынка ограничены суммой денег С. Пусть xi, 0≤xi≤Ki - количество продукции, производимой предприятием i, а - себестоимость единицы продукции, pi, a≤pi≤C/xi - цена единицы продукции. Предположим, что: предприятия не знают объемов выпуска и выбираемых цен продукции друг друга; на рынке вначале покупается более дешевая продукция; в случае равенства цен покупается продукция второго предприятия. Укажите вид критерия эффективности первого предприятия, если его цель состоит в разорении партнера

перейти к ответу ->>

Какое из утверждений справедливо для биматричной игры
(A,B) = \begin{pmatrix}(1,-2)&(2,0)\\ (2,1)&(2,-1)\end{pmatrix}

перейти к ответу ->>

Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель второй стороны (бомбардировщика) состоит в выживании. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для второй стороны описывается таблицей
бомбардировщик сбитбомбардировщик уцелел
истребитель сбит01
истребитель уцелел01
Каков вид усредненной полезности бомбардировщика, если каждая из сторон может произвести один выстрел и дуэлянты не слышат выстрелов друг друга - дуэль бесшумная

перейти к ответу ->>

Говорят, что стратегия x1 строго доминирует стратегию x"1 в игре <X1,X2,M1(x1,x2),M2(x1,x2)>, если (∀x2∈X2)M1(x1′,x2) >M1(x1",x2). Какие утверждения справедливы для игры, в которой множества стратегий игроков Х1={1,2,3,4}, Х2={1,2,3,4,5}, а функции выигрыша заданы в виде
M_1(x_1,x_2) = \begin{vmatrix} -3&0&-8&-13&19\\13&2&16&-2&10\\-2&-3&6&-4&-10\\11&0&12&-1&16\end{vmatrix}
M_2(x_1,x_2) = \begin{vmatrix} -12&-13&8&4&1\\-17&-19&-16&-19&-17\\4&11&11&10&5\\-1&-19&1&0&1\end{vmatrix}

перейти к ответу ->>

Пусть в игре двух лиц множества стратегий конечны X1=X2={1,2} и порядок ходов заранее не определен. Игроку, делающему ход вторым, известен выбор партнера. В какой из игр не возникает борьба за очередность ходов?

перейти к ответу ->>

Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом Каковы размеры матрицы игры?

перейти к ответу ->>

Две конкурирующие фирмы производят сезонный товар, пользующийся спросом в период времени 0≤t≤1. Качество конкурирующих товаров зависит от времени их поступления на рынок - чем позже товар появляется на рынке, тем качество его выше. Примем, что покупатели при отсутствии конкуренции приобретают товар, имеющийся на рынке, а при наличии двух товаров отдают предпочтение товару более высокого качества. Если товары поступают на рынок одновременно, то они пользуются одинаковым спросом. Продажа товара приносит производителю доход С в единицу времени. Каким выражением описывается критерий эффективности первой стороны, если ее цель состоит в максимизации дохода?

перейти к ответу ->>

Задача линейного программирования с ограничениями типа неравенств имеет вид
w1*+w2*+w3*=max{w1+w2+w3:wj≥0,1≤j≤3,w1+3w2+5w3≤1,4w1+2w2+w3≤1}
Для какой матричной игры решение задачи линейного программирования определяет оптимальную стратегию второго игрока?

перейти к ответу ->>

Установить, какие точки являются седловыми для функции
M(x,y)=\left\{ \begin {array}{1} 1-x^2,x \ge y\\y^2,x<y\end{array} \right.
в области 0≤x≤1,0≤y≤1

перейти к ответу ->>

Чему равны гарантированные выигрыши сторон? Какая сделка (u0,v0) удовлетворяет аксиомам Нэша?

перейти к ответу ->>

Являются ли ситуациями равновесия в биматричной игре
(A,B) = \begin{pmatrix}(0,0)&(2,0)\\ (0,1)&(1,0)\end{pmatrix}
чистые стратегии

перейти к ответу ->>

Какое из утверждений справедливо для игры <X1,X2,M1(x1,x2), M2(x1,x2)>, где Х12=[-1,1], M1(x1,x2)= M2(x1,x2)=x1x2?

перейти к ответу ->>

Контроль качества продукции. Заказчик, осуществляя приемку у исполнителя сложного технического изделия, может выбрать одно из двух решений: признать изделие годным и принять его в эксплуатацию (покрывая стоимость обнаруженных впоследствии дефектов) либо признать изделие непригодным для эксплуатации и потребовать замены отдельных (возможно, некачественных) узлов. Качество изделия может быть удовлетворительным или неудовлетворительным, в зависимости от соблюдения технологии изготовления изделия. Замена исправных узлов оплачивается заказчиком и составляет условную единицу. Стоимость обнаруженных во время эксплуатации дефектов обходится заказчику в два раза дороже, в остальных случаях потери отсутствуют. Матрица потерь заказчика имеет вид Пусть заказчик перед принятием решения о приемке изделия проводит тестирование изделия. Результаты тестирования зависят от качества изделия и описываются условными распределениями вероятностей
z1- тестирование прошло успешноz2 - выполнилась большая часть тестовz3- выполнилась меньшая часть тестовz4 - ни один из тестов не выполнился
p(z/1)0,60,30,10
p(z/2)00,10,50,4
Чему равен риск ρ(ξ,d) от применения решающей функции
d(z)=\left\{ \begin {array}{1} a_1,z=z_1\\a_2, z \in \{z_2,z_3,z_4\}\end{array} \right.
при равновозможных состояниях природы?

перейти к ответу ->>

Какой вид имеет паретовская граница множества S?

перейти к ответу ->>

В статистической 2x3 игре
L(\omega,\alpha)=\begin{vmatrix}0&10&3\\10&0&3\end{vmatrix}
z1z2
p(z/1)0,250,75
p(z/2)0,750,25
Какое решение принять статистику, если ξ=(0.9,0.1) и в результате эксперимента наблюдается z2?

перейти к ответу ->>

Каждая из противоборствующих сторон пытается овладеть позицией противника. Первая сторона располагает двумя подразделениями, вторая – одним подразделением. Силы сторон распределяются для обороны собственной позиции и атаки позиции противника. Позиция считается занятой той стороной, которая выделила для ее захвата большее (целое) число подразделений. Если атакующие силы недостаточны для захвата позиций, то они отступают, и игра начинается заново. Игра завершается, если захвачена одна из позиций. Примем, что интересы сторон противоположны. При этом первая сторона выигрывает единицу, если ей удалось завладеть позицией противника, не потеряв своей, и проигрывает единицу, потеряв свой лагерь. Если в течение T периодов столкновений ни одна из позиций не захвачена, то игра завершается вничью. Для случая Т=2 дерево игры имеет вид где пара (i,j) означает "оставить i подразделений для обороны и направить j подразделений для атаки". Установите, какая 2x2 матрица описывает выигрыши первой стороны в первом из двух возможных периодов игры

перейти к ответу ->>

Пусть в игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> множества стратегий конечны X1=X2={1,2}, а критерии заданы в виде Какое из утверждений справедливо, если игрокам известны критерии, множества стратегий и решения принимаются одновременно (случай симметричного распределения информации об игре)?

перейти к ответу ->>

Установить, какие точки являются седловыми для функции
M(x,y)=\left\{ \begin {array}{1} 1,x>y\\0,x=y,\\-1,x<y\end{array} \right.
в области 0≤x≤1, 0≤y≤1

перейти к ответу ->>

Обслуживание загородных маршрутов. Известно, что жители больших городов, придерживаясь рационального принципа проведения воскресного отдыха на свежем воздухе, все более охотно выезжают за город, используя автобусный транспорт. Поэтому в выходные дни возникает проблема выделения дополнительных автобусов, следующих в загородные места отдыха. Очевидно, что потребность в дополнительном транспорте зависит от погоды в выходной день. Функция потерь транспортного предприятия, вычисленная на основе прошлых лет, имеет вид Графики функций математического ожидания потерь (функций риска) ρ=ρ(ξαi),1≤i≤3 в зависимости от априорного распределения вероятностей ζ=(ζ,1-ζ),0≤ζ≤1 на состояниях природы {плохая, хорошая}={1, 2} имеют вид Пусть в задаче обслуживания загородных маршрутов диспетчер принимает решение с учетом показаний барометра, причем, в силу несовершенства прибора, показания {дождь, переменно, ясно, очень сухо}={z1,z2,z3,z4} связаны с состоянием погоды стохастически:
z1z2z3z4
p(z/1)0,60,30,10
p(z/2)0,10,10,50,3
Сколько решающих функций (правил преобразования показаний барометра в решения) имеется у диспетчера?

перейти к ответу ->>

Какой вид имеет паретовская граница множества S?

перейти к ответу ->>

Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель первой стороны (истребителя) состоит в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функций p1(x) и p2(y) расстояния между самолетами. Полезность исхо-дов дуэли для первой стороны описывается таблицей
бомбардировщик сбитбомбардировщик уцелел
истребитель сбит10
истребитель уцелел10
Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты слышат выстрелы друг друга - дуэль шумная?

перейти к ответу ->>

Выбор маршрута. Транспортное предприятие планирует открыть автобусную линию от нового микрорайона до центра города либо по маршруту α1, либо по более протяженному маршруту α2 . Известно, что 30% жителей микрорайона работает в организациях, расположенных в окрестности маршрута α1 (первое состояние), и 70% - в окрестности маршрута α2 (второе состояние). Потери транспортного предприятия оцениваются матрицей Отношения правдоподобия p(z/2)/p(z/1) для результатов тестирования в задаче о выборе маршрута описываются таблицей
z1 - на работу и домой по маршруту α1z2 - на работу и домой по маршруту α2z3- на работу по маршруту α1, домой по маршруту α2z4 - на работу по маршруту α2, домой по маршруту α1
p(z/2)/p(z/1)3/5211
Каков вид байесовской решающей функции при априорном распределении вероятностей ξ=(0.3,0.7)

перейти к ответу ->>

Какие пары чистых стратегий игроков в биматричной игре
(A,B) = \begin{pmatrix}(3,0)&(0,0)\\ (0,3)&(0,2)\end{pmatrix}
являются устойчивыми и не являются эффективными?

перейти к ответу ->>

Пусть в конечной игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1={1,2,3,4}, X2={1,2,3,4,5}
M_1(x_1,x_2) = \begin{vmatrix} -3&0&-8&-13&19\\13&2&16&-2&10\\-2&-3&6&-4&-10\\11&-8&12&-14&16\end{vmatrix}
M_2(x_1,x_2) = \begin{vmatrix} -12&-13&8&4&1\\-17&-19&-16&-19&-17\\4&11&11&10&5\\-1&-19&1&0&1\end{vmatrix}
Какие стратегии игроков являются наилучшими по гарантированному результату?

перейти к ответу ->>

Выбор структуры посевов. Руководство сельскохозяйственного предприятия решает проблему выбора участков земли для посадки картофеля. Для хорошего урожая требуется определенное количество влаги. В среднем максимальные урожаи получаются при решении о посадке картофеля на участке, характеризующемся большой влажностью почвы (решение α2) при засушливом лете (второе состояние природы), или при решении о посадке картофеля на сухом участке (решение α1) при дождливом лете (первое состояние природы). Потери сельскохозяйственного предприятия оцениваются матрицей Пусть при решении проблемы выбора участков земли для посадки используется дополнительная информация о состоянии природы, полученная в результате наблюдений за погодой весной, в период посадки. Результаты наблюдений на основе многолетней статистики определяют условные распределения (в зависимости от состояния природы)
z1 - большое количество осадковz2 - малое количество осадков
p(z/1)0,60,4
p(z/2)0,20,8
Чему равен риск ρ(ξ,d) от применения решающей функции
d_{\xi}(z)=\left\{ \begin {array}{1} a_1,z=z_1\\a_2,z=z_2\end{array} \right.
при априорном распределении вероятностей ξ(o.5,0.5)?

перейти к ответу ->>

Выберите правильное утверждение: ситуацией равновесия по Нэшу в игре <X1,X2,M1(x1,x2), M2(x1,x2)> называется пара стратегий (x10,x20),удовлетворяющая соотношениям

перейти к ответу ->>

Какие пары стратегий являются седловыми точками матричной игры
A = \begin{vmatrix} -5&10&-10&-7&0\\-6&-5&6&-9&-10\\14&5&18&0&1\\-8&18&-11&-7&10\end{vmatrix}

перейти к ответу ->>

Обслуживание загородных маршрутов. Известно, что жители больших городов, придерживаясь рационального принципа проведения воскресного отдыха на свежем воздухе, все более охотно выезжают за город, используя автобусный транспорт. Поэтому в выходные дни возникает проблема выделения дополнительных автобусов, следующих в загородные места отдыха. Очевидно, что потребность в дополнительном транспорте зависит от погоды в выходной день. Функция потерь транспортного предприятия, вычисленная на основе прошлых лет, имеет вид Графики функций математического ожидания потерь (функций риска) ρ=ρ(ξαi),1≤i≤3 в зависимости от априорного распределения вероятностей ζ=(ζ,1-ζ),0≤ζ≤1 на состояниях природы {плохая, хорошая}={1, 2} имеют вид Пусть априорное распределение вероятностей на состояниях природы в задаче обслуживания загородных маршрутов есть ξ=(1/2,1/2) (состояния природы равновозможны), и выбору решения предшествует эксперимент. Какая из решающих функций, d1 или d2, указанных в таблице, предпочтительнее?
z1z2z3z4
d1(z)α3α2α1α1
d1(z)α3α2α2α1

перейти к ответу ->>

Какие пары чистых стратегий игроков в биматричной игре
(A,B) = \begin{pmatrix}(0,0)&(2,0)\\ (0,2)&(1,0)\end{pmatrix}
являются устойчивыми и эффективными?

перейти к ответу ->>

Пусть в задаче обслуживания загородных маршрутов диспетчер принимает решение с учетом показаний барометра, причем в силу несовершенства прибора показания {дождь, переменно, ясно, очень сухо}={z1,z2,z3,z4} связаны с состоянием погоды стохастически:
z1z2z3z4
p(z/1)0,60,30,10
p(z/2)0,10,10,50,3
Пусть априорное распределение вероятностей на состояниях природы в задаче обслуживания загородных маршрутов есть ξ=(0,1), и выбору решения предшествует эксперимент. Какая из решающих функций d1 или d2, указанных в таблице, предпочтительнее?
z1z2z3z4
d1(z)α3α2α1α1
d2(z)α3α1α1α1

перейти к ответу ->>

Две конкурирующие фирмы производят сезонный товар, пользующийся спросом в период времени 0≤t≤1. Качество конкурирующих товаров зависит от времени их поступления на рынок – чем позже товар появляется на рынке, тем качество его выше. Примем, что покупатели при отсутствии конкуренции приобретают товар, имеющийся на рынке, а при наличии двух товаров отдают предпочтение товару более высокого качества. Если товары поступают на рынок одновременно, то они пользуются одинаковым спросом. Продажа товара приносит производителю доход С в единицу времени. Каким выражением описывается критерий эффективности первой сто-роны, если ее цель состоит в получении дохода, превосходящего доход конкурента?

перейти к ответу ->>

Две противоборствующие стороны пытаются овладеть двумя позициями. Для этого первая сторона располагает тремя подразделениями, вторая - четырьмя подразделениями (например, полками). Каждый из противников может выделить для захвата любой из позиций целое число подразделений (в том числе и нулевое), полностью расходуя ресурсы. Позиция считается занятой той стороной, которая выделила для ее захвата большее число подразделений. Какой вид имеет критерий эффективности первой стороны, если цели сторон состоят в захвате большего числа позиций, чем у противника?

перейти к ответу ->>

Две противоборствующие стороны пытаются овладеть двумя позициями. Для этого первая сторона располагает тремя подразделениями, вторая - четырьмя подразделениями (например, полками). Каждый из противников может выделить для захвата любой из позиций целое число подразделений (в том числе и нулевое), полностью расходуя ресурсы. Позиция считается занятой той стороной, которая выделила для ее захвата большее число подразделений. Какой вид имеет критерий эффективности первой стороны, если ее цель состоит в уничтожении максимального числа подразделений противника? Предполагается, что одно подразделение первой стороны уничтожает одно подразделение второй при столкновении

перейти к ответу ->>

Пусть в конечной игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1={1,2,3,4}, X2={1,2,3,4,5}
M_2(x_1,x_2) =\begin{vmatrix}-12&-13&8&4&1\\-15&-19&-16&-19&-15\\4&11&11&10&5\\-1&-19&1&0&1\end{vmatrix}
Укажите стратегии второго игрока, являющиеся наилучшими по гарантированному результату

перейти к ответу ->>

В игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)>X1=[-1,1], X2=[0,2], M1(x1,x2)=M2(x1,x2)=-‌x1-x2. Какой выигрыш гарантирует первому игроку стратегия x1=1?

перейти к ответу ->>

Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются оптимальными по Парето (эффективными) в дуополии с назначением выпусков при C1=0,5, C2=0,5?

перейти к ответу ->>

Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются устойчивыми (образуют ситуацию равновесия по Нэшу) в дуополии с назначением выпусков при C1=0,4, C2=0,4

перейти к ответу ->>

Какие объемы выпуска являются оптимальными по Парето (эффективными) в дуополии с назначением выпусков при C1=0,7, C2=0,7

перейти к ответу ->>

Пусть в игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> множества стратегий конечны X1=X2={1,2} и порядок ходов заранее не определен. Игроку, делающему ход вторым, известен выбор партнера. В какой из игр возникает борьба за право первого хода?

перейти к ответу ->>

Пусть в игре двух лиц <X1,X2,M1 (x1,x2),M2 (x1, x2)> множества стратегий конечны X1=X2={1,2}, а критерии заданы в виде Какое из утверждений справедливо, если игрокам известны критерии, множества стратегий и первым ходит первый игрок (случай несимметричного распределения информации об игре)?

перейти к ответу ->>

Два производителя одного и того же товара могут производить его в объемах 0≤xi≤1,i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0 Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией M1(x1,x2)=xip (x)-ci(xi) Какое решение об объеме выпуска следует принять первому производителю, обладающим правом первого хода, если второй использует в качестве ответа функцию x2 =0,6-1,5x1 при C1=0,6 C2=0,4?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}2(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1}0,p<p_{min}\\3(p-p_{min}), p \ge p_{min}\end{array} \right.
pmin=2, pmax=12. Пусть посредник при понижении цены осуществляет закупку двух единиц товара, которые сбывает при повышении цены. Чему равна прибыль посредника в результате операции купли-продажи, если в начальный момент времени p=8, S(8)=18?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}3(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1} 0,p<p_{min}\\2(p-p_{min}), p \ge p_{min},\end{array} \right.
pmin=2, pmax=12. При какой цене товара имеет баланс спроса и предложения?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}2(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1} 0,p<p_{min}\\2(p-p_{min}), p \ge p_{min},\end{array} \right.
pmin=2, pmax=12. Пусть посредник при понижении цены осуществляет закупку двух единиц товара, которые сбывает при повышении цены. Чему равна прибыль посредника в результате операции купли-продажи, если в начальный момент времени p=8, S(8)=12

перейти к ответу ->>

Чему равен минимальный гарантированный проигрыш второго игрока в антагонистической игре с ядром
M(x,y)=\left\{ \begin {array}{1} x-y,x \ge y\\y-x, x<y\end{array} \right.
и множествами стратегий 0≤x≤1, 0≤y≤1?

перейти к ответу ->>

Чему равен максимальный гарантированный выигрыш первого игрока в антагонистической игре с ядром M(x,y)=-(x-y)2 и множествами стратегий 0≤x≤1, 0≤y≤1?

перейти к ответу ->>

Какому типу принадлежит игра <X,Y,M1(x, y),M2 (x, y)>, в которой X={x:0≤x≤1},Y={y:0≤y≤1}
M_1(x,y)=\left\{ \begin {array}{1}1-x,x>y\\y, x \le y\end{array} \right.
M_2(x,y)=\left\{ \begin {array}{1} x,x \ge y\\1-y, x<y\end{array} \right.

перейти к ответу ->>

Установить, какие точки являются седловыми для функции
M(x,y)=\left\{ \begin {array}{1} (1-x)^2,x \ge y\\y,x<y\end{array} \right.
в области 0≤x≤1,0≤y≤1

перейти к ответу ->>

Установить, какие точки являются седловыми для функции
M(x,y)=\left\{ \begin {array}{1} (1-x)^2,x \ge y\\y^2,x<y\end{array} \right.
в области 0≤x≤1,0≤y≤1

перейти к ответу ->>

Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного расстояния, и цель первой стороны (истребителя) состоит как в выживании, так и в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для первой стороны описывается таблицей
бомбардировщик сбитбомбардировщик уцелел
истребитель сбит0-1
истребитель уцелел10
Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты не слышат выстрелов друг друга - дуэль бесшумная

перейти к ответу ->>

Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом Каковы размеры матрицы игры?

перейти к ответу ->>

Установить, какая матрица является нормальной формой антагонистической игры в позиционной форме, задаваемой деревом. Предполагается, что первым ходит первый игрок

перейти к ответу ->>

Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом Какие стратегии образуют седловую точку ядра антагонистической игры?

перейти к ответу ->>

Укажите фигуру, соответствующую следующей игре: Ход 1. Случайно выбирается число u из множества {1,2}.Ход 2. Первый игрок, зная значение u, выбирает число x∈{1,2}. Ход 3. Второй игрок, не зная значения u и зная значение x, выбирает y∈{1,2}. После трех ходов первый игрок выигрывает у второго величину x+y, если сумма x+y четна, и проигрывает ее в противном случае

перейти к ответу ->>

Укажите биматричную игру, для которой ситуация равновесия определяется из графика

перейти к ответу ->>

Какое утверждение справедливо для биматричной игры
(A,B) = \begin{pmatrix}(2,1)&(0,0)\\ (2,-1)&(-1,-1)\end{pmatrix}

перейти к ответу ->>

Укажите биматричную игру, для которой ситуации равновесия определяются из графика

перейти к ответу ->>

Цена игры с матрицей
A = \begin{vmatrix}2&-1\\ 0&3\end{vmatrix}
равна единице. Указать, какие векторы являются оптимальными по гарантированному результату стратегиями для первого игрока

перейти к ответу ->>

Какие пары чистых стратегий игроков в биматричной игре
(A,B) = \begin{pmatrix}(2,1)&(6,2)\\ (4,3)&(7,2)\end{pmatrix}
являются эффективными, но не являются устойчивыми?

перейти к ответу ->>

Какое решение имеет задача линейного программирования
max{u1+u2:ui≥0,1≤i≤2,-u1+u2≤9, u1+2u2≤36, 2u1+u2≤42}?

перейти к ответу ->>

Задача линейного программирования с ограничениями типа неравенств имеет вид u1*+u2*=min{u1+u2:ui≥0,1≤i≤2,u1+4u2≥1, 3u1+2u2≥1, 5u1+u2≥1}?Для какой матричной игры решение задачи линейного программирования определяет оптимальную стратегию первого игрока?

перейти к ответу ->>

Какое решение имеет задача линейного программирования
max{2u1+u2:ui≥0,1≤i≤2,-u1+u2≤9, u1+2u2≤36, 2u1+u2≤42}
?

перейти к ответу ->>

Пусть первый игрок располагает m единицами ресурса, второй – n еди-ницами, и у каждого имеется по две стратегии. Если игроки выбирают стратегии с одинаковыми номерами (например, первые), то ресурс второго игрока уменьшается на единицу. При выборе разных по номерам стратегий уменьшается на единицу ресурс первого игрока. Игра заканчивается, если один из игроков исчерпает свой ресурс. При этом первый игрок выигрывает единицу, если ресурс второго игрока равен нулю, и проигрывает единицу если равен нулю его собственный ресурс. Динамика запасов ресурса за один шаг игры описывается деревом где (m,n) – начальные запасы ресурсов первого и второго игрока соответственно. Какой вид имеет матрица антагонистической игры, соответствующая игре в позиционной форме, при начальных запасах ресурсов (1,2)?

перейти к ответу ->>

Игра, задаваемая биматрицей
(A,B) = \begin{pmatrix}(0,0)&(5,1)\\ (1,5)&(0,0)\end{pmatrix}
разыгрывается повторно, если игроки выбрали стратегии с несовпадающими номерами. Выигрыши игроков в повторениях суммируются, причем каждому из них известен выигрыш, полученный на первом этапе. Являются ли ситуациями равновесия в биматричной 8x8 игре (см. ответ 1 второй задачи) чистые стратегии?

перейти к ответу ->>

Чему равны гарантированные выигрыши игроков в биматричной игре
(A,B) = \begin{pmatrix}(3,0)&(0,0)\\(0,3)&(1,1)\end{pmatrix}

перейти к ответу ->>

Какой вид имеет множество допустимых сделок без побочных платежей для биматричной игры
(A,B) = \begin{pmatrix}(3,0)&(0,0)\\(0,3)&(1,1)\end{pmatrix}

перейти к ответу ->>

Какой вид имеет множество допустимых сделок без побочных платежей для биматричной игры
(A,B) = \begin{pmatrix}(2,1)&(6,2)\\(4,3)&(7,2)\end{pmatrix}

перейти к ответу ->>

Какой вид имеет множество допустимых сделок с побочными платежами для биматричной игры
(A,B) = \begin{pmatrix}(2,1)&(6,2)\\(4,3)&(7,2)\end{pmatrix}

перейти к ответу ->>

Какая сделка (u0,v0) удовлетворяет аксиомам Нэша для допустимого множества S при гарантированных уровнях u*=1,v*=0?

перейти к ответу ->>

Какая сделка u0,v0 удовлетворяет аксиомам Нэша для допустимого множества S при гарантированных уровнях u*=2,v*=1?

перейти к ответу ->>

Задача торга. Продавец (первый игрок) располагает едини-цей неделимого товара. Он решает, какую назначить цену: высокую или низкую. Покупатель (второй игрок) может либо приобрести товар, либо отказаться от покупки. Матрицы доходов в не-которых условных единицах имеют вид Чему равны гарантированные выигрыши сторон? Какая сделка (u0,v0) удовлетворяет аксиомам Нэша?

перейти к ответу ->>

Множество допустимых сделок задачи о выпуске продукции имеет вид Чему равны гарантированные выигрыши сторон? Какая сделка (u0,v0) удовлетворяет аксиомам Нэша?

перейти к ответу ->>

Выбор маршрута. Транспортное предприятие планирует открыть автобусную линию от нового микрорайона до центра города либо по маршруту α1, либо по более протяженному маршруту α2 . Известно, что 30% жителей микрорайона работает в организациях, расположенных в окрестности маршрута α1 (первое состояние), и 70% - в окрестности маршрута α2 (второе состояние). Потери транспортного предприятия оцениваются матрицей Пусть для обоснования решения о маршруте используются следующие результаты выборочного анкетирования о предпочтениях жителей микрорайона (в зависимости от места работы):
z1- на работу и домой по маршруту α1z2 - на работу и домой по маршруту α2z3- на работу по маршруту α1, домой по маршруту α2z4 - на работу по маршруту α2, домой по маршруту α1
p(z/1)0,50,20,20,1
p(z/2)0,30,40,20,1
Чему равен риск ρ(ξ,d) от применения решающей функции
d_{\xi}(z)=\left\{ \begin {array}{1} a_1,z\in \{z_1,z_3,z_4\}\\a_2,z=z_2\end{array} \right.
при априорном распределении вероятностей ξ=(0.3,0.7)?

перейти к ответу ->>

В статистической 2x3 игре
L(\omega,\alpha)=\begin{vmatrix}0&10&3\\10&0&3\end{vmatrix}
z1z2
p(z/1)0,250,75
p(z/2)0,750,25
Какое решение принять статистику, если ξ=(0.5,0.5) и в результате эксперимента наблюдается z2?

перейти к ответу ->>

В статистической игре с единичным испытанием матрица потерь имеет вид
L(\omega,\alpha)=\begin{vmatrix}0&1\\1/3&0\end{vmatrix}
а статистическая связь между состояниями природы и результатами эксперимента описывается таблицей
z1z2z3z4
p(z/1)0,50,20,20,1
p(z/2)0,30,40,20,1
(см. задачу о выборе маршрута, стр. 312). Функция байесовского риска состоит из четырех отрезков, принадлежащих прямым ρ=ξ,ρ=0,5ξ+0,1(1-ξ),ρ=0,2ξ+0,2(1-ξ),ρ=1/3(1-ξ) и имеет видЧему равны минимаксные потери статистика?

перейти к ответу ->>

В статистической игре с единичным испытанием матрица потерь имеет вид
L(\omega,\alpha)=\begin{vmatrix}0&1\\4&0\end{vmatrix}
а статистическая связь между состояниями природы и результатами эксперимента описывается таблицей
z1z2
p(z/1)0,60,4
p(z/2)0,20,8
(см. задачу о выборе маршрута, стр. 312). Функция байесовского риска состоит из трех отрезков, принадлежащих прямым ρ=ξ,ρ=0,4ξ+0,8(1-ξ),ρ=4(1-ξ) и имеет видЧему равны минимаксные потери статистика?

перейти к ответу ->>

Пусть первый игрок располагает m единицами ресурса, второй – n еди-ницами, и у каждого имеется по две стратегии. Если игроки выбирают стратегии с одинаковыми номерами (например, первые), то ресурс второго игрока уменьшается на единицу. При выборе разных по номерам стратегий уменьшается на единицу ресурс первого игрока. Игра заканчивается, если один из игроков исчерпает свой ресурс. При этом первый игрок выигрывает единицу, если ресурс второго игрока равен нулю, и проигрывает единицу если равен нулю его собственный ресурс. Динамика запасов ресурса за один шаг игры описывается деревом где (m,n) – начальные запасы ресурсов первого и второго игрока соответственно. Укажите 2x2 матрицу, соответствующую первому из двух возможных этапов игры, при начальных запасах ресурсов (1,2)

перейти к ответу ->>

Какое решение имеет задача линейного программирования
A=\begin{vmatrix}2&-1\\-2&1\end{vmatrix}
Указать, какую из задач линейного программирования следует решить для отыскания оптимальной по гарантированному результату стратегии второго игрока

перейти к ответу ->>

Говорят, что стратегия x1a первого игрока является абсолютной в игре <X1,X2,M1(x1,x2),M2(x1,x2)>, если (∀x1∈X1)(∀x2∈X2)M1(x1а,x2) ≥M1(x1,x2) Какие утверждения справедливы для игры, в которой множества стратегий игроков X1={1,2,3,4}, X2={1,2,3,4,5}, а функции выигрыша заданы в виде
M_1(x_1,x_2) = \begin{vmatrix} -3&0&-8&-13&19\\13&2&16&-2&10\\-2&-3&6&-4&-10\\11&-8&12&-14&16\end{vmatrix}
M_2(x_1,x_2) = \begin{vmatrix} -12&-13&8&4&1\\-17&-19&-16&-19&-17\\4&11&11&10&5\\-1&-19&1&0&1\end{vmatrix}

перейти к ответу ->>

Антагонистическая игра задана матрицей
A = \begin{vmatrix}3&-4\\ -2&3\end{vmatrix}
В пользу какого игрока поставлена игра?

перейти к ответу ->>

В статистической 2x3 игре
L(\omega,\alpha)=\begin{vmatrix}0&10&3\\10&0&3\end{vmatrix}
z1z2
p(z/1)0,250,75
p(z/2)0,750,25
Какое решение принять статистику, если ξ=(0.25,0.75) и в результате эксперимента наблюдается z2?

перейти к ответу ->>

Пусть биматричная 2x2 игра обладает свойством (∀(i,j)≠(k,l))(aij≠akl,bij≠bkl). Какие утверждения справедливы для этой игры?

перейти к ответу ->>

Какой вид имеет множество допустимых сделок с побочными платежами для биматричной игры
(A,B) = \begin{pmatrix}(3,0)&(0,0)\\(0,3)&(1,1)\end{pmatrix}

перейти к ответу ->>

Два производителя одного и того же товара могут производить его в объемах 0≤xi ≤1, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0 Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыльi-го производителя от выпуска товара в объеме xi описывается функцией M1(x1,x2)=xip(x)-ci(xi). Указать, какой вид имеет график функции наилучшего ответа второго производителя на известное решение об объеме выпуска первого при C1=0,6,C2=0,4

перейти к ответу ->>

Каждая из противоборствующих сторон пытается овладеть позицией противника. Первая сторона располагает двумя подразделениями, вторая – одним подразделением. Силы сторон распределяются для обороны собственной позиции и атаки позиции противника. Позиция считается занятой той стороной, которая выделила для ее захвата большее (целое) число подразделений. Если атакующие силы недостаточны для захвата позиций, то они отступают, и игра начинается заново. Игра завершается, если захвачена одна из позиций. Примем, что интересы сторон противоположны. При этом первая сторона выигрывает единицу, если ей удалось завладеть позицией противника, не потеряв своей, и проигрывает единицу, потеряв свой лагерь. Если в течение T периодов столкновений ни одна из позиций не захвачена, то игра завершается вничью. Для случая Т=2 дерево игры имеет вид где пара (i,j) означает "оставить i подразделений для обороны и направить j подразделений для атаки". Установить, какая из матриц является нормальной формой антагонистической игры в позиционной форме, соответствующей случаю Т=2

перейти к ответу ->>

Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются устойчивыми в дуополии с назначением выпусков (образуют ситуацию равновесия по Нэшу) при C1=0,5, C2=0,5?

перейти к ответу ->>

Какие согласованные смешанные стратегии игроков в задаче о сделке, порождаемой биматричной игрой
(A,B) = \begin{pmatrix}(3,0)&(0,0)\\(0,3)&(1,1)\end{pmatrix}
к дележу (u,v)=(1,1)?

перейти к ответу ->>

Какие рулетки реализуют случайный выбор с вероятностями (2/3,1/3)?

перейти к ответу ->>

Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель второй стороны (бомбардировщика) состоит в выживании. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для второй стороны описывается таблицей
бомбардировщик сбитбомбардировщик уцелел
истребитель сбит01
истребитель уцелел01
Каков вид усредненной полезности бомбардировщика, если каждая из сторон может произвести один выстрел и дуэлянты слышат выстрелы друг друга - дуэль шумная

перейти к ответу ->>

В игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)>X1=[-1,1], X2=[0,2], M1(x1,x2)=M2(x1,x2)=-‌x1-x2. Какой выигрыш гарантирует первому игроку стратегия x1=0?

перейти к ответу ->>

Пусть первый игрок располагает m единицами ресурса, второй – n еди-ницами, и у каждого имеется по две стратегии. Если игроки выбирают стратегии с одинаковыми номерами (например, первые), то ресурс второго игрока уменьшается на единицу. При выборе разных по номерам стратегий уменьшается на единицу ресурс первого игрока. Игра заканчивается, если один из игроков исчерпает свой ресурс. При этом первый игрок выигрывает единицу, если ресурс второго игрока равен нулю, и проигрывает единицу если равен нулю его собственный ресурс. Динамика запасов ресурса за один шаг игры описывается деревом где (m,n) – начальные запасы ресурсов первого и второго игрока соответственно. Какой вид имеет матрица выигрышей первого игрока, если запас ресурсов каждого из игроков равен единице?

перейти к ответу ->>

Два предприятия, обладающие производственными возможностями Ki, i=1,2, продают на рынке один и тот же вид продукции. Возможности рынка ограничены суммой денег С. Пусть xi, 0≤xi≤Ki - количество продукции, производимой предприятием i, a - себестоимость единицы продукции, pi, a≤pi≤C/xi - цена единицы продукции. Предположим, что: предприятия не знают объемов выпуска и выбираемых цен продукции друг друга; на рынке вначале покупается более дешевая продукция; случае равенства цен покупается продукция второго предприятия.Укажите вид критерия эффективности первого предприятия, если его цель состоит в получении большей прибыли, чем у партнера

перейти к ответу ->>

Говорят, что стратегия x2 нестрого доминирует стратегию x2" в игре <X1,X2,M1(x1,x2),M2(x1,x2)>, если (∀x1∈X1)M2(x1′,x2) >M2(x1",x2) Какие утверждения справедливы для игры, в которой множества стратегий игроков X1={1,2,3,4}, X2={1,2,3,4,5}, а функции выигрыша заданы в виде
M_1(x_1,x_2) = \begin{vmatrix} -3&0&-8&-13&19\\13&2&16&-2&10\\-2&-3&6&-4&-10\\11&-8&12&-14&16\end{vmatrix}
M_2(x_1,x_2) = \begin{vmatrix} -12&-13&8&4&1\\-15&-19&-16&-19&-15\\4&11&11&10&5\\-1&-19&1&0&1\end{vmatrix}

перейти к ответу ->>

Позиционная игра. Антагонистическая игра с полной информацией, в которой первым ходит первый игрок, задана деревом Какие стратегии образуют седловую точку ядра антагонистической игры?

перейти к ответу ->>

Какие объемы выпуска являются устойчивыми (образуют ситуацию равновесия по Нэшу) в дуополии с назначением выпусков при C1=0,7, C2=0,7

перейти к ответу ->>

Чему равны гарантированные выигрыши игроков в биматричной игре
(A,B) = \begin{pmatrix}(2,1)&(6,2)\\(4,3)&(7,2)\end{pmatrix}

перейти к ответу ->>

Игра, задаваемая биматрицей
(A,B) = \begin{pmatrix}(0,0)&(5,1)\\ (1,5)&(0,0)\end{pmatrix}
разыгрывается повторно, если игроки выбрали стратегии с несовпадающими номерами. Выигрыши игроков в повторениях суммируются, причем каждому из них известен выигрыш, полученный на первом этапе. Являются ли ситуациями равновесия в исходной биматричной игре чистые стратегии?

перейти к ответу ->>

Контроль качества продукции. Заказчик, осуществляя приемку у исполнителя сложного технического изделия, может выбрать одно из двух решений: признать изделие годным и принять его в эксплуатацию (покрывая стоимость обнаруженных впоследствии дефектов) либо признать изделие непригодным для эксплуатации и потребовать замены отдельных (возможно, некачественных) узлов. Качество изделия может быть удовлетворительным или неудовлетворительным, в зависимости от соблюдения технологии изготовления изделия. Замена исправных узлов оплачивается заказчиком и составляет условную единицу. Стоимость обнаруженных во время эксплуатации дефектов обходится заказчику в два раза дороже, в остальных случаях потери отсутствуют. Матрица потерь заказчика имеет вид Отношения правдоподобия p(z/2)/p(z/1) для результатов тестирования есть
z1- тестирование прошло успешноz2 - выполнилась большая часть тестовz3- выполнилась меньшая часть тестовz4 - ни один из тестов не выполнился
p(z/2)/p(z/1)01/35
Каков вид байесовской решающей функции при равновоз-можных состояниях природы?

перейти к ответу ->>

Дуополия с назначением выпусков. Два производителя одного и того же товара могут производить его в объемах 0≤xi≤0.5, i=1,2. Затраты на выпуск единицы продукции составляют ci(xi)=Cixi,Ci>0. Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией Mi(xix2)=xip(x)-ci(xi). Какие объемы выпуска являются оптимальными по Парето (эффективными) в дуополии с назначением выпусков при C1=0,4, C2=0,4

перейти к ответу ->>

Цена игры с матрицей
A = \begin{vmatrix}2&-1\\ -2&1\end{vmatrix}
равна нулю. Указать, какие вектора являются оптимальными по гарантированному результату стратегиями для второго игрока

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}3(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1} 0,p<p_{min}\\2(p-p_{min}), p \ge p_{min},\end{array} \right.
pmin=2, pmax=12. Пусть посредник при понижении цены осуществляет закупку двух единиц товара, которые сбываются при повышении цены. Чему равна прибыль посредника в результате операции купли-продажи, если в начальный момент времени p=10,5, S(10,5)=17?

перейти к ответу ->>

Пусть в игре двух лиц <X1,X2,M1 (x1,x2),M2(x1,x2)> множества стратегий конечны X1=X2={1,2} и порядок ходов заранее не определен. Игроку, делающему ход вторым, известен выбор партнера. В какой из игр возникает борьба за право второго хода?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}2(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1}0,p<p_{min}\\3(p-p_{min}), p \ge p_{min}\end{array} \right.
pmin=2, pmax=12 При какой цене товара имеет баланс спроса и предложения?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}2(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1} 0,p<p_{min}\\2(p-p_{min}), p \ge p_{min},\end{array} \right.
pmin=2, pmax=12. Является ли цена, определяющая равновесие спроса и предложения, устойчивой, если количество товара, поступающего на рынок в текущий момент, определяется ценой товара в предшествующий момент дискретного времени?

перейти к ответу ->>

Какому типу принадлежит игра <X,Y,M1(x,y),M2 (x, y)>, в которой X={x:0≤x≤1},Y={y:0≤y≤1}
M_1(x,y)=\left\{ \begin {array}{1}1-x,x>y\\y, x \le y\end{array} \right.
M_2(x,y)=\left\{ \begin {array}{1} x,x>y\\1-y, x \le y\end{array} \right.

перейти к ответу ->>

Установить, какие точки являются седловыми для функции M(x,y)=8xy-4x-4y+1 в области 0≤x≤1,0≤y≤1

перейти к ответу ->>

Какие пары стратегий являются седловыми точками матричной игры
A = \begin{vmatrix} -11&-11&-15&13&-6\\-10&-13&-8&0&-5\\14&5&-6&5&12\\-4&18&-11&9&-9\end{vmatrix}

перейти к ответу ->>

Какие пары стратегий являются седловыми точками матричной игры
A = \begin{vmatrix} 7&-10&13&-2&-16\\1&-14&16&-14&7\\18&-9&5&0&0\\-6&-9&3&0&-8\end{vmatrix}

перейти к ответу ->>

Какое решение имеет задача линейного программирования
max{-u1+2u2:ui≥0,1≤i≤2,-u1+u2≤9, u1+2u2≤36, 2u1+u2≤42}
?

перейти к ответу ->>

Каждая из противоборствующих сторон пытается овладеть позицией противника. Первая сторона располагает двумя подразделениями, вторая – одним подразделением. Силы сторон распределяются для обороны собственной позиции и атаки позиции противника. Позиция считается занятой той стороной, которая выделила для ее захвата большее (целое) число подразделений. Если атакующие силы недостаточны для захвата позиций, то они отступают, и игра начинается заново. Игра завершается, если захвачена одна из позиций. Примем, что интересы сторон противоположны. При этом первая сторона выигрывает единицу, если ей удалось завладеть позицией противника, не потеряв своей, и проигрывает единицу, потеряв свой лагерь. Если в течение T периодов столкновений ни одна из позиций не захвачена, то игра завершается вничью. Для случая Т=2 дерево игры имеет вид где пара (i,j) означает "оставить i подразделений для обороны и направить j подразделений для атаки".Укажите матрицу, которая является нормальной формой антагонистической игры в позиционной форме, соответствующей случаю Т=1

перейти к ответу ->>

Какой вид имеет паретовская граница множества S?

перейти к ответу ->>

Какой вид имеет множество допустимых сделок с побочными платежами для биматричной игры
(A,B) = \begin{pmatrix}(0,0)&(2,0)\\(0,1)&(1,0)\end{pmatrix}

перейти к ответу ->>

Задача торга. Продавец (первый игрок) располагает едини-цей неделимого товара. Он решает, какую назначить цену: высокую или низкую. Покупатель (второй игрок) может либо приобрести товар, либо отказаться от покупки. Матрицы доходов в не-которых условных единицах имеют вид Как выглядят оптимальные стратегии угроз при заключении сделки и какую сделку (u+,v+) они порождают?

перейти к ответу ->>

В статистической игре с единичным испытанием матрица потерь имеет вид
L(\omega,\alpha)=\begin{vmatrix}0&1\\4&0\end{vmatrix}
а статистическая связь между состояниями природы и результатами эксперимента описывается таблицей
z1z2
p(z/1)0,60,4
p(z/2)0,20,8
(см. задачу о выборе маршрута, стр. 312). Функция байесовского риска состоит из трех отрезков, принадлежащих прямым ρ=ξ,ρ=0,4ξ+0,8(1-ξ),ρ=4(1-ξ) и имеет видКакая стратегия статистика является минимаксной?

перейти к ответу ->>

В статистической игре с единичным испытанием матрица потерь имеет вид
L(\omega,\alpha)=\begin{vmatrix}0&1\\2&0\end{vmatrix}
а статистическая связь между состояниями природы и результатами эксперимента описывается таблицей
z1z2z3z4
p(z/1)0,60,30,10
p(z/2)00,10,50,4
(см. задачу контроля качества продукции). Функция байесовского риска состоит из трех отрезков, принадлежащих прямым ρ=0,4ξ,ρ=0,1ξ+0,1(1-ξ)2,ρ=0,6ξ(1-ξ)2 и имеет вид Чему равны минимаксные потери статистика?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}2(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1}0,p<p_{min}\\3(p-p_{min}), p \ge p_{min}\end{array} \right.
pmin=2, pmax=12. Является ли цена, определяющая равновесие спроса и предложения, устойчивой, если количество товара, поступающего на рынок в текущий момент, определяется ценой товара в предшествующий момент дискретного времени?

перейти к ответу ->>

Антагонистическая игра задана матрицей
A=\begin{vmatrix}-1&2\\1&0\end{vmatrix}
Указать, какую задачу линейного программирования следует решить для отыскания цены игры

перейти к ответу ->>

Две конкурирующие фирмы производят сезонный товар, пользующийся спросом в период времени 0≤t≤1. Качество конкурирующих товаров зависит от времени их поступления на рынок - чем позже товар появляется на рынке, тем качество его выше. Примем, что покупатели при отсутствии конкуренции приобретают товар, имеющийся на рынке, а при наличии двух товаров отдают предпочтение товару более высокого качества. Если товары поступают на рынок одновременно, то они пользуются одинаковым спросом. Продажа товара приносит производителю доход С в единицу времени.Каким выражением описывается критерий эффективности первой стороны, если ее цель состоит в разорении конкурент?

перейти к ответу ->>

Какая согласованная смешанная стратегия игроков в задаче о сделке, порождаемой биматричной игрой
(A,B) = \begin{pmatrix}(2,1)&(6,2)\\(4,3)&(7,2)\end{pmatrix}
приводит к дележу (u,v)=(5,3)

перейти к ответу ->>

Фрахт судна. Грузоотправитель пытается договориться с судовладельцем о фрахте судна для перевозки скоропортящейся продукции. У каждого из партнеров две стратегии: "уступка" и "непреклонность" в цене фрахта. Доходы сторон в некоторых условных единицах описываются матрицами (грузоотправитель - первый игрок)Какие решения сторон образуют ситуации равновесия по Нэшу и к каким выигрышам приводит применение равновесных стратегий?

перейти к ответу ->>

Установить, какая матрица является нормальной формой антагонистической игры в позиционной форме, задаваемой деревом Предполагается, что вначале бросается симметричная монета, после чего ходит второй игрок

перейти к ответу ->>

Укажите смешанные стратегии, являющиеся ситуациями равновесия в биматричной игре
(A,B) = \begin{pmatrix}(1,-1)&(-2,1)\\ (-1,1)&(1,-2)\end{pmatrix}

перейти к ответу ->>

В статистической игре с единичным испытанием матрица потерь имеет
L(\omega,\alpha)=\begin{vmatrix}0&1\\1/3&0\end{vmatrix}
статистическая связь между состояниями природы и результатами эксперимента описывается таблицей
z1z2z3z4
p(z/1)0,50,20,20,1
p(z/2)0,30,40,20,1
(см. задачу о выборе маршрута, стр. 312). Функция байесовского риска состоит из четырех отрезков, принадлежащих прямым ρ=ξ,ρ=0,5ξ+0,1(1-ξ),ρ=0,2ξ+0,2(1-ξ),ρ=1/3(1-ξ) и имеет видКакая стратегия статистика является минимаксной?

перейти к ответу ->>

Установить, какая матрица является нормальной формой антагонистической игры в позиционной форме, задаваемой деревом Предполагается, что первым ходит первый игрок

перейти к ответу ->>

Антагонистическая игра задана матрицей
A = \begin{vmatrix}2&-1\\ 0&3\end{vmatrix}
Указать, какую из задач линейного программирования следует решить для отыскания оптимальной по гарантированному результату стратегии первого игрока:

перейти к ответу ->>

Выберите правильное утверждение: пара стратегий (x1,x2) называется оптимальной по Парето в игре <X1,X2,M1(x1,x2), M2(x1,x2)>, если

перейти к ответу ->>

Установить, какие точки являются седловыми для функции M(x,y)=x-y в области 0≤x≤1,0≤y≤1?

перейти к ответу ->>

Чему равен минимальный гарантированный проигрыш второго игрока в антагонистической игре с ядром M(x,y)=(x-y)2 и множествами стратегий -1≤x≤1,-1≤y≤1?

перейти к ответу ->>

Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель первой стороны (истребителя) состоит как в выживании, так и в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функцийирасстояния между самолетами. Полезность исходов дуэли для первой стороны описывается таблицей
бомбардировщик сбитбомбардировщик уцелел
истребитель сбит0-1
истребитель уцелел10
Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты слышат выстрелы друг друга - дуэль шумная?

перейти к ответу ->>

Позиционная игра. Антагонистическая игра с полной информацией задана деревом Игра начинается с бросания жребия для определения порядка ходов игроков: при выпадении единицы первым ходит первый игрок, при выпадении двойки - второй. Какие стратегии образуют седловую точку ядра антагонистической игры?

перейти к ответу ->>

Игра, задаваемая биматрицей
(A,B) = \begin{pmatrix}(0,0)&(5,1)\\ (1,5)&(0,0)\end{pmatrix}
разыгрывается повторно, если игроки выбрали стратегии с несовпадающими номерами. Выигрыши игроков в повторениях суммируются, причем каждому из них известен выигрыш, полученный на первом этапе. Какой вид имеет биматрица игры, соответствующая повторно разыгрываемой исходной игре?

перейти к ответу ->>

Чему равны гарантированные выигрыши игроков в биматричной игре
(A,B) = \begin{pmatrix}(0,0)&(2,0)\\(0,1)&(1,0)\end{pmatrix}

перейти к ответу ->>

Какая сделка u0,v0 удовлетворяет аксиомам Нэша для допустимого множества S при гарантированных уровнях u*=0,v*=0?

перейти к ответу ->>

Выпуск продукции. Два предприятия специализируются на выпуске одного из двух видов взаимодополняющей продукции (например, первое предприятие выпускает преимущественно столы, а второе - стулья). Каждое из предприятий может выпускать продукцию типов "М" или "К" (мало- или крупногабаритную). В зависимости от выбранных решений, ожидаемые доходы от реализации в некоторых условных единицах описываются матрицами Какие решения сторон образуют ситуацию равновесия по Нэшу и к каким выигрышам приводит применение равновесных стратегий?

перейти к ответу ->>

В статистической игре с единичным испытанием матрица потерь имеет вид
L(\omega,\alpha)=\begin{vmatrix}0&1\\2&0\end{vmatrix}
а статистическая связь между состояниями природы и результатами эксперимента описывается таблицей
z1z2z3z4
p(z/1)0,60,30,10
p(z/2)00,10,50,4
(см. задачу контроля качества продукции, стр. 310). Функция байесовского риска состоит из трех отрезков, принадлежащих прямым ρ=0,4ξ,ρ=0,1ξ+0,1(1-ξ)2,ρ=0,6ξ(1-ξ)2 и имеет вид Какая стратегия статистика является минимаксной?

перейти к ответу ->>

Две противоборствующие стороны пытаются овладеть двумя позициями. Для этого первая сторона располагает тремя подразделениями, вторая - четырьмя подразделениями (например, полками). Каждый из противников может выделить для захвата любой из позиций целое число подразделений (в том числе и нулевое), полностью расходуя ресурсы. Позиция считается занятой той стороной, которая выделила для ее захвата большее число подразделений. Какой вид имеет критерий эффективности первой стороны, если ее цель состоит в захвате максимального числа позиций

перейти к ответу ->>

Какой вид имеет множество допустимых сделок без побочных платежей для биматричной игры
(A,B) = \begin{pmatrix}(0,0)&(2,0)\\(0,1)&(1,0)\end{pmatrix}

перейти к ответу ->>

Какому типу принадлежит игра <X,Y,M1(x, y),M2 (x, y)>, в которой X={x:0≤x≤1},Y={y:0≤y≤1}
M_1(x,y)=\left\{ \begin {array}{1} (1-x)^2,x \ge y\\y^2, x<y\end{array} \right.
M_2(x,y)=\left\{ \begin {array}{1} 2(1-x),x \ge y\\3\sqrt{y}, x<y\end{array} \right.

перейти к ответу ->>

В какой из матричных игр оптимальные стратегии такие же, как и в игре с матрицей
\begin{vmatrix}2&0&0\\1&2&1\\0&0&2\end{vmatrix}

перейти к ответу ->>

Два производителя одного и того же товара могут производить его в объемах 0≤xi≤1, i=1,2. Затраты на выпуск единицы продукции составляют cixi=Cixi,Ci>0 Товар подается на рынке по цене p(x)=1-x, где x=x1+x2 - совокупное предложение товара. Прибыль i-го производителя от выпуска товара в объеме xi описывается функцией M1(x1,x2)=xip(x)-ci(xi). Какое решение об объеме выпуска следует принять первому производителю, обладающим правом первого хода, если второй использует в качестве ответа функцию x2=0,3-x1/2 при C1=0,6,C2=0,4?

перейти к ответу ->>

Пусть в игре двух лиц <X1,X2,M1 (x1,x2),M2(x1,x2)> множества стратегий конечны X1=X2={1,2}, а критерии заданы в виде Какое из утверждений справедливо, если игрокам известны критерии, множества стратегий и первым ходит второй игрок (случай несимметричного распределения информации об игре)?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}3(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1} 0,p<p_{min}\\2(p-p_{min}), p \ge p_{min},\end{array} \right.
pmin=2, pmax=12. Является ли цена, определяющая равновесие спроса и предложения, устойчивой, если количество товара, поступающего на рынок в текущий момент, определяется ценой товара в предшествующий момент дискретного времени?

перейти к ответу ->>

Укажите деревья, являющиеся позиционной формой антагонистической игры

перейти к ответу ->>

Какие рулетки реализуют случайный выбор с вероятностями (1/8,7/8)?

перейти к ответу ->>

Множество допустимых сделок задачи о выпуске продукции имеет вид Как выглядят оптимальные стратегии угроз при заключении сделки и какую сделку (u+,v+) они порождают?

перейти к ответу ->>

Рынок товара. Зависимость спроса на однородный товар от цены p за единицу товара имеет вид
D(p)=\left\{ \begin {array}{1}2(p_{max} -p),0 \le p \le p_{max},\\0,p>p_{max}\end{array} \right.
Поступление товара на рынок описывается функцией предложения
S(p)=\left\{ \begin {array}{1} 0,p<p_{min}\\2(p-p_{min}), p \ge p_{min},\end{array} \right.
pmin=2, pmax=12. При какой цене товара имеет баланс спроса и предложения?

перейти к ответу ->>

В игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1=[-1,1], X2=[0,2], M1(x1,x2)=M2(x1,x2)=-‌x1-x2. Какой выигрыш гарантирует первому игроку стратегия x2=1?

перейти к ответу ->>

Два предприятия, обладающие производственными возможностями Ki, i=1,2, продают на рынке один и тот же вид продукции. Возможности рынка ограничены суммой денег С. Пусть xi, 0≤xi≤Ki - количество продукции, производимой предприятием i,, a - себестоимость единицы продукции, pi, a≤pi≤C/xi - цена единицы продукции. Предположим, что: предприятия не знают объемов выпуска и выбираемых цен продукции друг друга; на рынке вначале покупается более дешевая продукция; в случае равенства цен покупается продукция второго предприятия.Как выглядит критерий эффективности первого предприятия, стремящегося получить наибольшую прибыль?

перейти к ответу ->>

Укажите биматричную игру, для которой ситуации равновесия определяются из графика

перейти к ответу ->>

Укажите вектора, являющиеся смешанными стратегиями первого игрока в игре
(A,B) = \begin{pmatrix}(1,-1)&(-2,1)&(0,-1)\\ (-1,1)&(1,-2)&(1,0)\end{pmatrix}

перейти к ответу ->>

Задача торга. Продавец (первый игрок) располагает едини-цей неделимого товара. Он решает, какую назначить цену: высокую или низкую. Покупатель (второй игрок) может либо приобрести товар, либо отказаться от покупки. Матрицы доходов в не-которых условных единицах имеют вид Какие решения сторон образуют ситуацию равновесия по Нэшу и к каким выигрышам приводит применение равновесных стратегий?

перейти к ответу ->>

Какой из наборов является решением игры с матрицей
A = \begin{vmatrix}-1&2\\ 1&0\end{vmatrix}

перейти к ответу ->>

Пусть в конечной игре двух лиц <X1,X2,M1(x1,x2),M2(x1,x2)> X1={1,2,3,4}, X1={1,2,3,4,5}
M_1(x_1,x_2) = \begin{vmatrix} -3&0&-8&-13&19\\13&2&16&-2&10\\-2&-3&6&-4&-10\\11&0&12&-1&16\end{vmatrix}
Какая стратегия первого игрока является наилучшей по гарантированному результату?

перейти к ответу ->>

Дуэль истребитель-бомбардировщик. Пусть в дуэли истребитель-бомбардировщик самолеты летят навстречу друг другу с единичного рас-стояния, и цель первой стороны (истребителя) состоит в поражении противника. Дуэль заканчивается, если одна из сторон поразила противника или стороны исчерпали боеприпасы. Вероятности попадания описываются в виде функций p1(x) и p2(y) расстояния между самолетами. Полезность исходов дуэли для первой стороны описывается таблицей
бомбардировщик сбитбомбардировщик уцелел
истребитель сбит10
истребитель уцелел10
Каков вид усредненной полезности истребителя, если каждая из сторон может произвести один выстрел и дуэлянты не слышат выстрелов друг друга - дуэль бесшумная?

перейти к ответу ->>

Позиционная игра. Антагонистическая игра с полной информацией задана деревом Игра начинается с бросания жребия для определения порядка ходов игроков: при выпадении единицы первым ходит первый игрок, при выпадении двойки - второй. Каковы размеры матрицы игры?

перейти к ответу ->>